Q1.

5(a)	Quote trajectory equation from MF19 and use $\cos \theta = 1/\sec \theta$ $y = x \tan \theta - \frac{gx^2}{2u^2} (1 + \tan^2 \theta)$	В1	Must include step with $\sec^2 \theta$ Allow derived from first principles AG
		1	
5(b)	$16 = 20 - \frac{10 \times 100}{2u^2} (1+4)$	M1	Substitute into result (a)
	$u^2 = 625, (u = 25)$	A1	
	Use equation again: $30 = 18 \tan \theta - \frac{10 \times 324}{2 \times 625} \left(1 + (\tan \theta)^2\right)$	M1	
	$2.592(\tan\theta)^2) - 18\tan\theta + 32.592 = 0$	A1	3 term quadratic. Alternatives include: $54t^2 - 375t + 679 = 0$, $324t^2 - 2250t + 4074 = 0$
	Discriminant = $324 - 4 \times 2.592 \times 32.592 = -13.91$	M1	Discriminant for alternatives: -6039 and -217404
	As this is less than 0, no real solutions for θ	A1	CWO
		6	

Q2.

At greatest height $0 = 100 \sin \theta - gt$	M1	
t = 8	A1	
Therefore times at height H are $t=3$ (and $t=13$)	B1	
Substitute into $H = 100 \sin \theta t - \frac{1}{2}gt^2$	M1	
H=195	A1	
Alternative method to question 7(a)		
$\uparrow H = 100 \sin \theta t - \frac{1}{2} g t^2$	M1	
And $H = 100 \sin \theta (t+10) - \frac{1}{2} g (t+10)^2$	A1	
Subtract: $1000 \sin \theta = \frac{1}{2} g (20t + 100)$	M1	
t=3	B1	
H=195	A1	
	Therefore times at height H are $t=3$ (and $t=13$) Substitute into $H = 100 \sin \theta t - \frac{1}{2}gt^2$ $H = 195$ Alternative method to question 7(a) $\uparrow H = 100 \sin \theta t - \frac{1}{2}gt^2$ And $H = 100 \sin \theta (t+10) - \frac{1}{2}g(t+10)^2$ Subtract: $1000 \sin \theta = \frac{1}{2}g(20t+100)$ $t=3$	$t = 8$ $Therefore times at height H are t = 3 (and t = 13) Substitute into H = 100 \sin \theta t - \frac{1}{2}gt^2 H = 195 A1 Alternative method to question 7(\mathbf{a}) \uparrow H = 100 \sin \theta t - \frac{1}{2}gt^2 A1 And H = 100 \sin \theta (t + 10) - \frac{1}{2}g(t + 10)^2 Subtract: 1000 \sin \theta = \frac{1}{2}g(20t + 100) t = 3 B1$

7(a)	Alternative method to question 7(a)		
	$\uparrow H = 100 \sin \theta t - \frac{1}{2} g t^2$	B1	
	Difference between roots = $\frac{\sqrt{(100\sin\theta)^2 - 2gH}}{\frac{1}{2}g}$	M1 A1	
	Equate to 10 and rearrange to find H	М1	
	H = 195	A1	
		5	

7(b)	Time to required point = 15 s	B1	
	$ \uparrow \nu = 100 \sin \theta - 10 \times 15 (=-70) $ $ \rightarrow \nu = 100 \cos \theta = 60 $	В1	Both components.
	Magnitude = 92.2	B1	
	Angle below horizontal = $\tan^{-1} (70/60) = 49.4^{\circ}$	B1	
		4	

Q3.

7(a)	$y = 0$ in trajectory equation: $R \tan \theta - g \frac{R^2}{2u^2(\cos \theta)^2} = 0$	M1	
	$(R=)\frac{2u^2\sin\theta\cos\theta}{g} \text{ only}$	A1	Any equivalent single term expression, for example: $\frac{u^2 \sin 2\theta}{g}, \frac{2u^2 \tan \theta}{g \sec^2 \theta}, \text{ at least one intermediate line of working, not just quoting a result.}$ SC B1 using SUVAT.
		2	
7(b)	$x = their \frac{u^2 \sin \theta \cos \theta}{g}$ and substitute in trajectory equation.	M1	Or use SUVAT.
	$H = \frac{u^2 \left(\sin \theta\right)^2}{2g}$	A1	Single term.
		2	
7(c)	Use $R = \frac{4H}{\sqrt{3}}$ and simplify: $\tan \theta = \sqrt{3}$, $\theta = 60^{\circ}$	B1	AG
		1	

Q4.

5	At $A: \uparrow u \sin \theta - 8g \rightarrow u \cos \theta$	M1	Both.
	$\tan \alpha = \frac{u \sin \theta - 8g}{u \cos \theta}$	A1	
	At B: $\uparrow u \sin \theta - 32g \rightarrow u \cos \theta$	M1	Both.
	$\tan \beta = \frac{u \sin \theta - 32g}{u \cos \theta}$	A1	
	$\frac{u\sin\theta - 8g}{u\cos\theta} \times \frac{u\sin\theta - 32g}{u\cos\theta} = -1$	B1	Perpendicular directions, so $\tan \alpha \times \tan \beta = -1$.
	$u^2 - 320u + 25600 = 0$	M1	Simplify to a quadratic in u.
	u = 160	A1	
		7	

Q5.

1(a)	Velocity: $\rightarrow u \cos \alpha$	B1	
	$\int u \sin \alpha - gT$	B1	Allow 10 for g. Must be T.
		2	
1(b)	$\frac{u\cos\alpha}{u\sin\alpha - gT} = -\frac{\sin\alpha}{\cos\alpha} \text{oe}$	M1 FT	Allow missing minus sign on RHS for M1. FT from (a).
	$T = \frac{u}{g \sin \alpha}$	A1	
		2	
1(c)	$\sin \alpha < 1$ giving $T > \frac{u}{g}$	В1	AG
		1	

Q6.

7(a)	Coordinates of A: $x = a \sin 60$, $y = a - a \cos 60$	В1	
	$\frac{a}{2} = \frac{a\sqrt{3}}{2}\sqrt{3} - \frac{g\frac{\left(a\sqrt{3}\right)^2}{2^2}}{2V^2 \cdot \frac{1}{4}}$	M1	Substitute <i>their</i> (x, y) into correct trajectory equation.
	Rearrange to find V^2 .	M1	
	$V^2 = \frac{3}{2}ag, V = \sqrt{\frac{3}{2}ag}$	A1	
		4	
7(b)	$\frac{1}{2}mu^2 - \frac{1}{2}mV^2 = mga(1 + \cos 60)$	М1	Energy equation.
	$u^2 = \frac{9}{2}ag$	A1	u is the speed at P .
	$T - mg = \frac{m}{a}u^2$	M1	N2L
	$T = \frac{11}{2} mg$	A1	
		4	

Q7.

7(a)	For Q : $x = u \cos \beta T$	B1	
	For P : $x = \frac{35}{2}\cos\alpha(T+1)$	B1	
	Collision, so $\frac{35}{2}\cos\alpha(T+1) = u\cos\beta T$	М1	Equate and attempt to rearrange.
	$\frac{35}{2} \times \frac{3}{5} (T+1) = u \times \frac{2}{\sqrt{5}} T$	A1	AG Shown convincingly.
	$4uT = 21\sqrt{5}(T+1)$		
		4	
7(b)	Vertical motion to collision:	M1 A1	M1 for both expressions, one correct.
	For Q : $y = u \sin \beta T - \frac{1}{2}gT^2$		
	For P: $y = \frac{35}{2} \sin \alpha (T+1) - \frac{1}{2} g(T+1)^2$		
	Equate: $u \times \frac{1}{\sqrt{5}}T - \frac{1}{2}gT^2 = \frac{35}{2} \times \frac{4}{5}(T+1) - \frac{1}{2}g(T+1)^2$ $14(T+1) - \frac{1}{2}g(T^2 + 2T + 1 - T^2) = \frac{21}{4}(T+1)$	M1	Equate and attempt to solve
	16T + 36 = 21T + 21, 15 = 5T $T = 3$	A1	
		4	
			1
7(c)	x = 42	B1	
	y = 24	M1	
	y = -24 (or 24 m below O)	A1	Correct sign or in words.

Q8.

3(a)	Components of velocity: $\rightarrow 25\cos\theta$ $\uparrow 25\sin\theta - 2g$	B1	
	Speed = $\sqrt{(25\cos\theta)^2 + (25\sin\theta - 2g)^2}$	M1 A1	Expression for speed or square of speed.
	$(25\cos\theta)^2 + (25\sin\theta - 2g)^2 = 15^2$ $625 - 100g\sin\theta + 4g^2 = 225$	M1	Attempt to solve and find value for $\sin \theta$
	$\sin\theta = \frac{800}{1000} = \frac{4}{5}$	A1	
		5	

3(b)	Time of flight $=$ $\left(\frac{2 \times 25 \sin \theta}{g}\right) = 4$ (s)	В1	
	Range = $\frac{2 \times 25 \sin \theta}{g} \times 25 \cos \theta$	М1	Any equivalent method.
	Range = 60 (m)	A1	cwo
	Alternative method for question 3(b)		
	$y = \frac{4}{3}x - \frac{1}{45}x^2$	В1	Equation of trajectory
	Substitute $y = 0$ and solve	М1	
	60 (m)	A1	
		3	