Q1.

8	(i)	Mid-point of $AC = (2, 3)$ Gradient of $AC = \frac{1}{3}$	B1	Со
		Gradient of $AC = 73$ Gradient of $BD = -3$	M1	Use of $m_1 m_2 = -1$
		Equation $y - 3 = -3(x - 2)$	A1	Co
			[3]	,
	(ii)	If $x = 0$, $y = 9$, $B(0, 9)$	B1√	√ on his equation.
		Vector move $D(4, -3)$	M1 A1	Valid method. co.
			[3]	
	(iii)	$AC = \sqrt{40}$		
		$BD = \sqrt{160}$	M1	Correct use on either AC or BD,
		Area = 40	M1 A1	Full and correct method. co
		(or by matrix method M2 A1)	[3]	

Q2.

8	(i) $3x^2 + x - 2 = 0$ $(x+1)(3x-2) \rightarrow x = -1 \text{ or } \frac{2}{3}$ $(-1, 1), (\frac{2}{3}, 6)$	M1A1 M1 A1	[4]	Eliminates <i>x</i> or <i>y</i> . Sets quadratic to 0. Attempt to solve <i>their</i> equation co
	(ii) $AB^2 = (5/3)^2 + 5^2$ AB = 5.27(0) mid-point = $(-1/6, 7/2)$	M1 A1 B1√	[3]	$\sqrt{\text{their coordinates from (i)}}$ Or $(5\sqrt{10})/3$ oe ft from <i>their</i> (i)

Q3.

QU.				
7	(i)	$(2, 5)$ to $(10, 9)$ gradient = $\frac{1}{2}$	B1	co
		Equation of L_2 $y = \frac{1}{2}x$.	B1√	$$ on gradient of L_1
		Gradient of perpendicular $= -2$	M1	Use of $m_1 m_2 = -1$
		Eqn of Perp $y-5=-2(x-2)$	M1	Correct form of line eqn
		Sim Eqns \rightarrow $C(3.6, 1.8)$	A1	co
			[5]
	(ii)	$d^2 = 1.6^2 + 3.2^2 \rightarrow d = 3.58$	M1	Correct method for AC
			A1	co (accept with $\sqrt{5}$ in answer)
			[2]

Q4.

3	$\frac{x}{a} + \frac{y}{b} = 1$ P(a, 0) and Q(0, b)		
	Distance $\rightarrow \sqrt{(a^2 + b^2)} = \sqrt{45}$	M1 A1	
	Gradients $\rightarrow \frac{-a}{b} = \frac{-1}{2}$	M1 A1	M1 even if sign(s) incorrect.
	Solution of sim eqns $\rightarrow a = 6, b = 3$	A1 [5]	Correct values a and b (both)

Q5.

9	(i)	Gradient of $AC = \frac{1}{2}$ Gradient of $BD = -2$ Eqn of BD is $y - 6 = -2(x - 3)$	B1 M1 M1	co Use of $m_1m_2 = -1$ with AC Correct formula for straight line
		Eqn of AC is $y + 1 = \frac{1}{2}(x + 1)$ Sim eqns $\rightarrow M(5, 2)$ Vector move – or midpoint back	M1 A1 M1 A1√	Solution. co Correct method. $\sqrt{\text{ on } M}$.
	(ii)	$\rightarrow D(7, -2)$ Ratio of $AM : MC = \sqrt{45} : \sqrt{20}$ or Vector step $\rightarrow 3 : 2$	[7] M1 A1 [2]	Correct distance formula. Looks at the two x or y steps. Must be numerical, 1.5 ok, not as roots

Q6.

12(a)	Centre = (2, -1)	B1	
	$r^2 = [2 - (-3)]^2 + [-1 - (-5)]^2$ or $[2 - 7]^2 + [-1 - 3]^2$ OE	M1	OR $\frac{1}{2} \left[(-3-7)^2 + (-5-3)^2 \right]$ OE
	$(x-2)^2 + (y+1)^2 = 41$	A1	Must not involve surd form SCB3 $(x+3)(x-7)+(y+5)(y-3)=0$
		3	
12(b)	Centre = their $(2, -1) + {8 \choose 4} = (10, 3)$	B1FT	SOI FT on their (2, -1)
	$(x-10)^2 + (y-3)^2 = their 41$	B1FT	FT on <i>their</i> 41 even if in surd form SCB2 $(x-5)(x-15)+(y+1)(y-7)=0$
		2	

12(c)	Gradient <i>m</i> of line joining centres = $\frac{4}{8}$ OE	В1	
	Attempt to find mid-point of line.	M1	Expect (6, 1)
	Equation of RS is $y-1=-2(x-6)$	M1	Through <i>their</i> $(6, 1)$ with gradient $\frac{-1}{m}$
	y = -2x + 13	A1	AG
	Alternative method for question 12(c)		
	$(x-2)^2 + (y+1)^2 - 41 = (x-10)^2 + (y-3)^2 - 41 \text{ OE}$	M1	
	$x^2 - 4x + 4 + y^2 + 2y + 1 = x^2 - 20x + 100 + y^2 - 6y + 9$ OE	A1	Condone 1 error or errors caused by 1 error in the first line
	16x + 8y = 104	A1	
	y = -2x + 13	A1	AG
		4	
12(d)	$(x-10)^2 + (-2x+13-3)^2 = 41$	M1	Or eliminate y between C ₁ and C ₂
	$x^{2} - 20x + 100 + 4x^{2} - 40x + 100 = 41 \rightarrow 5x^{2} - 60x + 159 = 0$	A1	AG
		2	

Q7.

11(a)	Express as $(x-4)^2 + (y+2)^2 = 16 + 4 + 5$	M1
	Centre <i>C</i> (4, –2)	A1
	Radius = $\sqrt{25} = 5$	A1
		3
11(b)	$P(1,2)$ to $C(4, -2)$ has gradient $-\frac{4}{3}$	B1FT
	(FT on coordinates of C)	
	Tangent at P has gradient = $\frac{3}{4}$	M1
	Equation is $y-2 = \frac{3}{4}(x-1)$ or $4y = 3x + 5$	A1
		3
11(c)	Q has the same coordinate as $Py = 2$	B1
	Q is as far to the right of C as $Px = 3 + 3 + 1 = 7Q(7, 2)$	B1
		2
11(d)	Gradient of tangent at $Q = -\frac{3}{4}$ by symmetry	B1FT
	(FT from part (b))	
	Eqn of tangent at Q is $y-2 = -\frac{3}{4}(x-7)$ or $4y + 3x = 29$	M1
	$T(4, \frac{17}{4})$	A1
		3

Q8.

10(a)	Mid-point is (-1, 7)	B1
	Gradient, m, of AB is 8/12 OE	B1
	$y - 7 = -\frac{12}{8}(x+1)$	M1
	3x + 2y = 11 AG	A1
		4
10(b)	Solve simultaneously $12x - 5y = 70$ and their $3x + 2y = 11$	M1
	x = 5, y = -2	A1
	Attempt to find distance between <i>their</i> $(5, -2)$ and either $(-7,3)$ or $(5, 11)$	M1
	$(r) = \sqrt{12^2 + 5^2}$ or $\sqrt{13^2 + 0} = 13$	A1
	Equation of circle is $(x-5)^2 + (y+2)^2 = 169$	A1
		5

Q9.

9(a)	$m_{AB} = \frac{4-2}{-1-3} = -\frac{1}{2}$	B1	
	Equation of tangent is $y-2=2(x-3)$	B1 FT	(3, 2) with <i>their</i> gradient $-\frac{1}{m_{AB}}$
		2	
9(b)	$AB^2 = 4^2 + 2^2 = 20$ or $r^2 = 20$ or $r = \sqrt{20}$ or $AB = \sqrt{20}$	B1	
	Equation of circle centre B is $(x-3)^2 + (y-2)^2 = 20$	M1 A1	FT their 20 for M1
		3	
9(c)	$(x-3)^2 + (2x-6)^2 = their \ 20$	M1	Substitute <i>their</i> $y-2=2x-6$ into <i>their</i> circle, centre <i>B</i>
	$5x^2 - 30x + 25 = 0$ or $5(x-3)^2 = 20$	A1	
	$[(5)(x-5)(x-1) \text{ or } x-3=\pm 2]$ $x=5, 1$	A1	
		3	