Q1.

	1			1	
4(a)		Volume	Centre of mass from AB	B1	For 9h/8 or 3h/8 (unsimplified)
	Small cone	$\frac{1}{3}\pi r^2.\frac{h}{2}$	$h + \frac{1}{4} \cdot \frac{h}{2} \left(= \frac{9h}{8} \right)$		
	Large cone	$\frac{1}{3}\pi(3r)^2.\frac{3h}{2}$	$\frac{1}{4} \cdot \frac{3h}{2} \left(= \frac{3h}{8} \right)$		
	Object	$\frac{26}{6}\pi(r)^2h$	\overline{x}		
	Take moments about			M1 A1	Moments equation: Allow use of relative masses 1, 26, 27
	$\frac{13}{3}\pi r^2 h \overline{x} = \frac{27}{6}\pi r^2 h \cdot \frac{3h}{8} - \frac{1}{6}\pi r^2 h \cdot \frac{9h}{8}$ $\overline{x} = \frac{9h}{26}$				
				A1	
				4	
4(b)	$\tan\theta = \frac{\overline{x}}{3r}$			M1	
	$(=\frac{3h}{26r})$ Use $h = \frac{13}{4}r$			A1	
	$\tan \theta = \frac{3}{8}$				
				2	

Q2.

	1			1	
3(a)	Cone	Volume Centre of mass from base $\frac{1}{3}\pi (3r)^2 \cdot 4r \qquad 4r+r$		B1	Distances correct
	Cylinder	$\pi(3r)^2$. 4r	2 <i>r</i>		
	Combined	$\frac{4}{3}\pi(3r)^2.4r$	\overline{x}		
	Taking mome $\overline{x} \cdot \frac{4}{3}\pi (3r)^2 \cdot 4$	Taking moments about base of cylinder: $\overline{x} \cdot \frac{4}{3}\pi (3r)^2 \cdot 4r = \frac{1}{3}\pi (3r)^2 \cdot 4r \cdot 5r + \pi (3r)^2 \cdot 4r \cdot 2r$			Moments equation
	$\overline{x} = \frac{11}{4}r$	$\overline{x} = \frac{11}{4}r$			
				4	
3(b)	Condition: $OG \cos \theta < OA$ (where O is vertex of cone and OA is slant height of cone)		B1	Correct condition for equilibrium	
	$\left(4r + \frac{5r}{4}\right) \times \frac{4}{5}$	$\left(4r + \frac{5r}{4}\right) \times \frac{4}{5} < 5r$			Expression in terms of r
	21 < 25 True			A1	Correct conclusion, with correct working
				3	

Q3.

1	ABD BCD Combined	Area 24 a ² 48 a ² 72 a ²	Centre of mass from DB $-a$ $2a$ \bar{x}		В1	All distances correct. ABCD can be split in other ways, for example ADC and ABC.	
	Taking moments about DB : $72 \ a^2 \overline{x} = 24 \ a^2 \times -a + 48 \ a^2 \times 2a$ OR Taking moments about A : $72 \ a^2 \overline{x} = 24 \ a^2 \times 2a + 48 \ a^2 \times 5a$ OR Taking moments about G : $24a^2 (\overline{x} + a) = 48a^2 \times (2a - \overline{x})$					Moments equation with masses in correct ratio.	
	$\overline{x} = a$				A1	cwo	
	Alternative method for question 1						
	ADC: distance of centre of mass from BD = $\frac{6a-3a}{3} = a$ ABC: distance of centre of mass from BD = $\frac{6a-3a}{3} = a$				B1	One calculation.	
	Second calculation or statement about symmetry				M1		
	$\overline{x} = a$			A1			
					3		

Q4.

4(a)	Area Centre of mass from AD		M1	Attempt at moments with three terms.	
	Square	9a ²	$\frac{3}{2}a$		
	CDF	$\frac{3}{2}ah$	а		
	BEC	$\frac{3}{2}ah$	$3a-\frac{1}{3}h$		
	Resulting AEFC	$9a^2-3ah$	\overline{x}		
	Taking moments about AD: $(9a^2 - 3ah) \ \overline{x} = \left(9a^2 \times \frac{3}{2}a\right) - \left(\frac{3}{2}ah \times a\right) - \left(\frac{3}{2}ah \times \left(3a - \frac{1}{3}h\right)\right)$			A1 A1	Two terms correct. All correct.
	$\overline{x} = \frac{27a^2 - 12ah + h^2}{6(3a - h)} \left(= \frac{9a - h}{6} \right)$				AEF
	$\overline{y} = \overline{x}$			B1	By symmetry or equal to their \overline{x} .
				5	
4(b)	For equilibrium, $\overline{x} \le 3a - h$ $27a^2 - 12ah + h^2 \le 6(3a - h)^2$			B1	Accept strict inequality.
	$27a^2 - 24ah + 5h^2 \geqslant 0$			M1	Homogeneous 3-term quadratic inequality.
	$h \leqslant \frac{9}{5} a$			A1	CAO.
				3	

Q5.

4(a)		Volume	Centre of mass from AB	M1	Attempt at moments, 3 terms.
	Hemisphere	$\frac{2}{3}\pi a^3$	$\frac{3}{8}a$		
	Cylinder	$\pi ka(\frac{a}{2})^2$	$\frac{ka}{2}$		
	Remainder	$\frac{2}{3}\pi a^3 - \pi ka \left(\frac{a}{2}\right)^2$	\overline{x}		
	Taking moments about AB: $ \left(\frac{2}{3} \pi a^3 - \pi k a \left(\frac{a}{2} \right)^2 \right) \times \overline{x} = \left(\frac{2}{3} \pi a^3 \times \frac{3}{8} a \right) - \left(\pi k a \left(\frac{a}{2} \right)^2 \times \frac{ka}{2} \right) $		A1 A1	Any 2 terms correct. All correct.	
	$\overline{x} = \frac{3a(2-k^2)}{2(8-3k)}$			A1	Shown convincingly, AG.
				4	
4 (b)	$\tan \theta = \frac{\overline{x}}{a}$			B 1	
	$\frac{3(2-k^2)}{2(8-3k)} = \frac{7}{18}$				
	$27k^2 - 21k +$	2=0		M1	Rearrange to form quadratic.
	$k = \frac{2}{3}$ and $k = \frac{2}{3}$	$=\frac{1}{9}$		A1	Both answers correct.
				3	

Q6.

7(a)	Frictional force = $\mu \times$ normal reaction at D and E	B1	$F_{AB} = \mu R, \ F_{BC} = \mu N$
	Moments about B , $Na - Ra = Wa(\sin \theta - \cos \theta)$ Moments about centre, $F_{AB}a + F_{BC}a = Wa(\cos \theta - \sin \theta)$ Moments about D , $F_{BC}a + Na = Wa(\cos \theta + \sin \theta)$ Moments about E , $Ra - F_{AB}a = Wa(\cos \theta + \sin \theta)$	В1	One moments equation about any point involving all relevant forces, resolved if necessary (AEF).
	Parallel to AB , $N-F_{AB}=W\sin\theta+W\sin\theta$ Perpendicular to AB , $F_{BC}+R=W\cos\theta+W\cos\theta$	В1	Two resolutions: all relevant terms, different frictional forces [Vertical: $R\cos\theta + F_{BC}\cos\theta + N\sin\theta = F_{AB}\sin\theta + W + W$ Horizontal: $F_{BC}\sin\theta + F_{AB}\cos\theta + R\sin\theta = N\cos\theta$] Alternative approach using two moments equations can earn the B1B1
	$N - R = \frac{1}{2} ((1 - \mu) N - (1 + \mu) R)$	M1	Combine appropriate equations.
	$N\left(1 - \frac{1}{2}(1 - \mu)\right) = R\left(1 - \frac{1}{2}(1 + \mu)\right)$ $N\left(\frac{1}{2} + \frac{1}{2}\mu\right) = R\left(\frac{1}{2} - \frac{1}{2}\mu\right)$	M1	Collect terms to obtain ratio/fraction in terms of μ only (CWO), any equivalent simplified form.
	$R: N = 1 + \mu : 1 - \mu$	A1	
		6	

Q7.

3(a)	Let F and R be friction and normal reaction at A Take moments about A , for rod $N \times 3a = W \times 2a \cos \theta + kW \times 4a \cos \theta$	M1	Correct terms, allow sign errors and cos/sin mix.
	$3N = (2+4k)W \times \frac{4}{5}$	A1	At least one intermediate line of working.
	$N = \frac{8}{15}W(1+2k)$		AG
		2	
3(b)	$\uparrow N\cos\theta + R = W + kW$	B1	Resolve (to include R) for rod.
	$\rightarrow F = N \sin \theta$ and $F = \frac{6}{7}R$	B1	Both.
	so $R = \frac{28}{75}W(1+2k)$ or $R = \frac{21}{45}W(1+k)$	M1	Find R or N .
	Eliminate to find k	M1	Complete method.
	$k = \frac{1}{3}$	A1	
		5	