Hypothesis Testing 1 MS

Q1.			
3	(i) $z = \frac{2.55 - 2.62}{0.3/\sqrt{45}} = -1.565$	M1	Standardising no cc
		M1	Dividing 0.3 by $\sqrt{45}$ as denominator
	P(z > -1.565) = 0.941	A1 [3]	Correct answer (Accept equivalent method using totals)
	(ii) rejection region is $m < a_1$ and $m > a_2$		
	where $\frac{a_1 - 2.62}{0.3/\sqrt{30}} = -1.645$	B1	±1.645 seen
	and $\frac{a_2 - 2.62}{0.3/\sqrt{30}} = 1.645$	M1	one correct unsimplified equation of correct form
		M1	second unsimplified equation of correct form (or clear use of 1-tail test and ± 1.282 used)
	m < 2.53 and $m > 2.71$	A1 [4]	correct answer

Q2.

Type I error is made when we say the number of white blood cells has decreased when it hasn't. $P(0) = e^{-5.2} = 0.005516$ $P(1) = e^{-5.2}(5.2) = 0.02868 \Sigma < 0.10$ $P(2) = e^{-5.2}(5.2^2/2) = 0.07458 \Sigma > 0.10$ P(Type I error) = 0.0342	-	Correct and relating to question Evaluating at least 2 of $P(X = 0, 1, 2)$ Comparing their Σ 3 probs with 10% (must be Σ probs) Correct answer, dep on previous M
	[4]	
H ₀ : $\lambda = 5.2$ H ₁ : $\lambda < 5.2$ P(0+1+2) = 0.1087 > 10% 2 not in C Region. Accept H ₀ . Not enough evidence to say the number of blood cells has decreased.	B1 M1 A1 [3]	Both hypotheses correct Stating 2 is not in the critical region from above, or evaluating P(0, 1, 2) and comparing with 10% again Correct conclusion no contradictions
P(Type II error) = $1 - P(0, 1)$ = $1 - e^{-4.1}(1 + 4.1)$ = 0.915	B1 M1 A1	Identifying correct area (indep) Some form of (Poisson) expression with mean 4.1 Correct answer
	number of white blood cells has decreased when it hasn't. $P(0) = e^{-5.2} = 0.005516$ $P(1) = e^{-5.2}(5.2) = 0.02868 \Sigma < 0.10$ $P(2) = e^{-5.2}(5.2^2/2) = 0.07458 \Sigma > 0.10$ P(Type I error) = 0.0342 $H_0: \lambda = 5.2$ $H_1: \lambda < 5.2$ P(0+1+2) = 0.1087 > 10% 2 not in C Region. Accept H ₀ . Not enough evidence to say the number of blood cells has decreased. P(Type II error) = 1 - P(0, 1) $= 1 - e^{-4.1}(1 + 4.1)$	number of white blood cells has decreased when it hasn't.M1 $P(0) = e^{-5.2} = 0.005516$ $P(1) = e^{-5.2}(5.2) = 0.02868 \Sigma < 0.10$ $P(2) = e^{-5.2}(5.2^2/2) = 0.07458 \Sigma > 0.10$ $P(Type I error) = 0.0342$ M1* $H_0: \lambda = 5.2$ $H_1: \lambda < 5.2$ $P(0+1+2) = 0.1087 > 10\%$ 2 not in C Region.B1 M1Accept H_0. Not enough evidence to say the number of blood cells has decreased.A1 [3] $P(Type II error) = 1 - P(0, 1)$ $= 1 - e^{-4.1}(1 + 4.1)$ B1 M1

Hypothesis Testing 1 MS

3. 5	(i)	$E(F) = 28 + 1/2 \times 52 = 54$ Var(F) = 5.6 ² + 1/4 × 12.4 ² = 69.8	B1 M1 A1	[3]	√69.8 or 8.35: M1A0
		- 09.8		[5]	109.8 01 8.55. 101140
	(ii)	H ₀ : Grinford mean = 54; H ₁ ; Grinford mean < 54 49 - 54	B1ft		Allow "µ", otherwise undefined mean: B0 ft their 54
		$\frac{49-34}{\sqrt{\frac{69.8}{10}}}$	M 1		Standardising must have $\sqrt{10}$
		= -1.89(3) or -1.89(2) allow +	A1		
		Comp with -1.645 (or 1.893 with 1.645)	M1		Comp P($z < -1.893$) with 0.05 Allow comparison with 1.96 for consistent 2-tail test
		Evidence that Grinford mean lower	Alft	[5]	Allow "Accept Grinford mean lower No contradictions OR Alt methods $(x - 54)/(\sqrt{(69.8/10)}) = 1.645$ giving x = 49.65 compare with 49 scores M1A1M1A1ft. oe. No mixed methods.

Q4.

7 (i)	Var $(\overline{X}) = \frac{121}{200}$ or SD of $\overline{X} = \frac{11}{\sqrt{200}}$		
	$(\pm)\frac{354 - 352}{\frac{11}{\sqrt{200}}} \qquad (=\pm 2.571)$	M1	Or with cc attempted. Allow no $\sqrt{10}$ Must include 200 or $\sqrt{200}$
	2 200	A1	2.57(1) or correct expression
	$1 - \Phi($ "2.571") (= 1 - 0.9949)	M1	
	(-1 - 0.9949) = 0.0051	A1[4]	
(ii)	(No) <i>n</i> is large, \overline{X} (appr) norm distr or CLT applies	B1 B1 [2]	"No" must be seen or implied, but gains no marks by itself $n \ge 30$ (SR Both statements correct, but wrong or no conclusion scores B1)
(iii)	H ₀ : Pop mean = 352 H ₁ : Pop mean \neq 352	B1	Allow ' μ ' but not just 'mean'
	$\pm \frac{356 - 352}{\frac{11}{\sqrt{50}}} \qquad \qquad \pm (= 2.57(1))$	M1 A1	Must have $\sqrt{50}$ Correct statement or 2.57(1)
	Comp with $z = \pm 1.96$ (signs consistent) Evidence that pop mean has changed	B1√ [4]	Correct comparison, and correct conclusion, follow through one tail test
	[To		

Visit <u>waltermaths.com</u> for more learning resources.

Hypothesis Testing 1 MS

Q5.				
2	H ₀ : P(correct) = $\frac{1}{5}$ H ₁ : P(correct) > $\frac{1}{5}$ B(100, $\frac{1}{5}$) \approx N(20, 16)	B1		Accept p Accept H_0 : $\mu = 20$ H_1 : $\mu > 20$
	$\frac{26.5 - 20}{4} = 1.625$	M1 A1		Allow wrong or no cc or denom = 16 For ± 1.625
		A1		
	$\operatorname{comp} z = 1.645$	M1		Valid comparison of z or areas $(0.0521 > 0.05)$
	Claim not justified	Alft	[5]	In context. No contradictions. Ft their z.

Q6.

1	(i)	H_0 : Pop mean = 3 H_1 : Pop mean > 3	B1 [1]	Allow or μ or λ , but not just 'mean'
	(ii)	0.0683 > 0.05 No evidence that pop mean increased	M1 A1ft [2]	For inequality stated or clearly shown on dig. Allow 'No increase in mean'
		[Total: 3		

Q7.

5 (i)	$P(> 9 \text{ Heads } \text{ unbiased}) = {}^{12}C_{10} \times 0.5^{10} \times 0.5^2 + 12 \\ \times 0.5^{11} \times 0.5 + 0.5^{12} \\ = 0.0193 \\ \text{Level is } 1.93\% \text{ or } 1.9\%$	M1 M1 A1	3	Allow Bin P($X = 9$, 10, 11, 12) correct or 1 – P($X = (9)$,10,11,12)) any p/q Allow Bin P ($X = 9$, 10, 11, 12) correct p/q Allow 2% if correct working seen
(ii)	B(100, 0.5) ≈ N(50, 25) $\frac{x-0.5-'50'}{\sqrt{'25'}} = z$ z = 1.645 x = 58.7 Rejection region is > 59	B1 M1 B1 A1 A1ft		Or proportion method N(0.5,0.0025) Allow with wrong or no cc or no $\sqrt{(cc \text{ for proportion method } 0.5/100)}$ + only (consistent with their standardisation) or > 58 (region and integer required)