Q	1	

6(i)	Alternative Method		
	$h = (15\sin\theta) \times 4 - \frac{g(4)^2}{2}$	B1	
	$\frac{m(15)^2}{2} = \frac{m(30)^2}{2} + mgh$	M1	Allow h not replaced
		M1	Attempt to eliminate h and attempt to solve for θ
	$\theta = 50.4^{\circ}$	A1	
		4	
6(ii)	$s = 15\sin 50.4 \times 4 - \frac{1}{2} \times g \times 4^2$	M1	Use vertical motion. Allow <i>their</i> θ for first M1
	<i>s</i> = 33.75 m AG	A1	
	$\cos\alpha = \frac{15\cos 50.4}{30}$	M1	Use trigonometry of a right angled triangle
	$\alpha = 71.4^{\circ}$ below the horizontal	A1	
		4	If $g = 9.8 \text{ or } 9.81$ used then M1A0M1A0

Q2.

2(i)	$-15\sin\theta = 15\sin\theta - 2g$	M1	Use $v = u + at$ vertically
	(<i>θ</i> =) 41.8	A1	
		2	
2(ii)	Vertically: $\frac{v}{15\cos\theta} = \pm \tan 20$	M1	v = vertical velocity
	$v = (\pm) 4.07$	A1	
	$-4.07 = 15\sin 41.8 - gt$	M1	Use $v = u + at$ vertically
	(<i>t</i> =) 1.41 s	A1	
		4	

Q3.			
4(i)	$x = 30\cos 60t$	B1	Use horizontal motion
	$y = 30\sin 60t - \frac{gt^2}{2}$	B1	Use s = ut + $\frac{gt^2}{2}$ vertically
	$y = \frac{30\sin 60x}{30\cos 60} - \frac{5x^2}{(30\cos 60)^2}$	M1	Attempt to eliminate t
	$y = 1.73x - 0.0222 x^2$ or $y = \sqrt{3}x - \frac{x^2}{45}$	A1	
		4	
4(ii)	$x = y$ or $\tan 45 = \frac{y}{x}$	M1	
	$1 = 1.73 - 0.0222x \text{ or } 1 = \sqrt{3} - \frac{x}{45}$	M1	x common to all three terms
	x = 32.9	A1	
		3	

Q4.

2(i)	$V_{\cos 30} = 40$	M1	Note V is the velocity of projection
2(1)			
	$V = 46.2 \text{ m s}^{-1}$	A1	Allow $\frac{80}{\sqrt{3}}$ or $\frac{80\sqrt{3}}{3}$
	$y = 23.1t - 5t^2$	B1FT	Use $s = ut + \frac{at^2}{2}$ vertically. FT candidates half V but not $V = 40$ used
		3	
2(ii)	$y = \frac{23.1x}{40} - \frac{5x^2}{1600}$	M1	Attempt to eliminate t by substituting $t = \frac{x}{40}$ into answer to part
			(i)
	$y = 0.577x - \frac{x^2}{320}$ or $y = 0.577x - 0.003125x^2$	A1	
		2	

Q5.

4(i)	Velocity component vertically = $\pm (V \sin 60 - 3g)$	B1	Use $v = u + at$
	$\tan 30 = \frac{30 - V\sin 60}{V\cos 60}$	M1	Use trigonometry of a right angled triangle
	$V = 15\sqrt{3} = 26(.0) \mathrm{m s^{-1}}$	A1	
		3	
4(ii)	$y = 26\sin 60 \times 3 - \frac{g \times 3^2}{2}$	B1FT	Use $s = ut + \frac{at^2}{2}$ vertically. Their V from part (i)
	$D^{2} = (26\sin 60 \times 3 - g \times 3^{2})^{2} + (26\cos 60 \times 3)^{2}$	M1	Use Pythagoras's Theorem

A1 3

D = 45(.0) m

Q6.		
1	For greatest height, $T = \frac{u}{2g}$	B1
	At $t = \frac{2T}{3}, \uparrow v_v = \frac{u}{2} - \frac{2Tg}{3} = \frac{u}{6}$	M1
	$\rightarrow v_h = \frac{u\sqrt{3}}{2}$	A1
	Speed = $\sqrt{v_v^2 + v_h^2} = \sqrt{\frac{u^2}{36} + \frac{3u^2}{4}}$	M1
	$=\frac{\sqrt{7}}{3}u$	A1
		5

Q7.

6(a)	Greatest height = $\frac{(u\sin\theta)^2}{2g}$	M1A1
	At ³ / ₄ greatest height, $\rightarrow v \cos \alpha = u \cos \theta$	M1
	At ³ / ₄ greatest height, $\uparrow (v \sin \alpha)^2 = (u \sin \theta)^2 - 2g \cdot \frac{3}{4} \frac{(u \sin \theta)^2}{2g}$	M1
	$v\sin\alpha = \frac{1}{2}u\sin\theta$	A1
	So $\tan \alpha = \frac{1}{2} \tan \theta \mathbf{AG}$	A1
		6

Q8.

5(a)		B1	Both
	Eliminate <i>t</i> : $y = u \sin \alpha$. $\frac{x}{u \cos \alpha} - \frac{1}{2}g \left(\frac{x}{u \cos \alpha}\right)^2$	M1	Eliminate
	$y = x \tan \alpha - \frac{g x^2}{2u^2} \sec^2 \alpha$	A1	AG
		3	
5(b)	Greatest height = $\frac{(u\sin\alpha)^2}{2g} = \frac{u^2}{4g}$	M1 A1	Accept alternative methods, for example differentiate expression in (a) and equate to 0.
	$t = u \sin 45 / g$ so $d = u \cos 45 . u \sin 45 / g = \frac{u^2}{2g}$	A1	AG
		3	

5(c)	Use greatest height displacements in trajectory equation $\frac{u^2}{4g} = \frac{u^2}{2g} \tan \alpha - \frac{gu^4}{2u^2 4g^2} \sec^2 \alpha$	M1	Use equation of trajectory (substitute coordinates of Q
	$u^2 = 2u^2 \tan \alpha - \frac{u^2}{2}(1 + \tan^2 \alpha)$	M1	Use of $\sec^2 \alpha = (1 + \tan^2 \alpha)$
	$\tan^2 \alpha - 4 \tan \alpha + 3 = 0$	M1	Obtain a three-term quadratic in $\tan \alpha$
	$\tan \alpha = 1$, 3 so $\alpha = 71.6^{\circ}$	A1	Both solutions needed
		4	