Algebra 1

Q1.

Solve the inequality |x + 3a| > 2|x - 2a|, where a is a positive constant.

[4]

Q2.

(i) Express
$$\frac{2}{(x+1)(x+3)}$$
 in partial fractions. [2]

(ii) Using your answer to part (i), show that

$$\left(\frac{2}{(x+1)(x+3)}\right)^2 \equiv \frac{1}{(x+1)^2} - \frac{1}{x+1} + \frac{1}{x+3} + \frac{1}{(x+3)^2}.$$
 [2]

Q3

Solve the equation

$$\frac{2^x + 1}{2^x - 1} = 5,$$

giving your answer correct to 3 significant figures.

[4]

Q4.

The polynomial $2x^3 + 5x^2 + ax + b$, where a and b are constants, is denoted by p(x). It is given that (2x + 1) is a factor of p(x) and that when p(x) is divided by (x + 2) the remainder is 9.

- (i) Find the values of a and b. [5]
- (ii) When a and b have these values, factorise p(x) completely. [3]

Q5

(i) Find the values of the constants A, B, C and D such that

$$\frac{2x^3 - 1}{x^2(2x - 1)} \equiv A + \frac{B}{x} + \frac{C}{x^2} + \frac{D}{2x - 1}.$$
 [5]

.Q6.

Solve the inequality |x-3| > 2|x+1|. [4]

Algebra 1

Q7.

(i) Express
$$\frac{4+5x-x^2}{(1-2x)(2+x)^2}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{4+5x-x^2}{(1-2x)(2+x)^2}$ in ascending powers of x, up to and including the term in x^2 . [5]

Q8.

Solve the inequality
$$2|x-3| > |3x+1|$$
. [4]

Q9.

Let
$$f(x) = \frac{3x}{(1+x)(1+2x^2)}$$
.

- (i) Express f(x) in partial fractions. [5]
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^3 . [5]

Q10.

Expand $(1 + 2x)^{-3}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients.

Q11.

The polynomial p(z) is defined by

$$p(z) = z^3 + mz^2 + 24z + 32,$$

where m is a constant. It is given that (z + 2) is a factor of p(z).

(i) Find the value of
$$m$$
. [2]

(ii) Hence, showing all your working, find

(a) the three roots of the equation
$$p(z) = 0$$
, [5]

(b) the six roots of the equation
$$p(z^2) = 0$$
. [6]