

Q1.

The diagram shows a circle C with centre O and radius 3 cm. The radii OP and OQ are extended to S and R respectively so that ORS is a sector of a circle with centre O. Given that PS = 6 cm and that the area of the shaded region is equal to the area of circle C,

- (i) show that angle $POQ = \frac{1}{4}\pi$ radians, [3]
- (ii) find the perimeter of the shaded region. [2]

Q2.

The diagram shows a metal plate made by fixing together two pieces, OABCD (shaded) and OAED (unshaded). The piece OAED is a minor sector of a circle with centre O and radius OAED is a major sector of a circle with centre O and radius OAED is OAED is a major sector of a circle with centre OAED is a major sector of a circle with centre OAED is OAED is

(i) the perimeter of the metal plate, [3]

(ii) the area of the metal plate. [3]

It is now given that the shaded and unshaded pieces are equal in area.

(iii) Find α in terms of π . [2]

Q3.

Fig. 1 shows a hollow cone with no base, made of paper. The radius of the cone is $6 \, \text{cm}$ and the height is $8 \, \text{cm}$. The paper is cut from A to O and opened out to form the sector shown in Fig. 2. The circular bottom edge of the cone in Fig. 1 becomes the arc of the sector in Fig. 2. The angle of the sector is θ radians. Calculate

(i) the value of
$$\theta$$
, [4]

(ii) the area of paper needed to make the cone. [2]

Q4.

The diagram shows triangle ABC in which AB is perpendicular to BC. The length of AB is 4 cm and angle CAB is α radians. The arc DE with centre A and radius 2 cm meets AC at D and AB at E. Find, in terms of α ,

(ii) the perimeter of the shaded region. [3]

Q5.

In the diagram, AYB is a semicircle with AB as diameter and OAXB is a sector of a circle with centre O and radius r. Angle $AOB = 2\theta$ radians. Find an expression, in terms of r and θ , for the area of the shaded region. [4]

Q6.

The diagram shows a circle with centre A and radius r. Diameters CAD and BAE are perpendicular to each other. A larger circle has centre B and passes through C and D.

(i) Show that the radius of the larger circle is $r\sqrt{2}$.

[1]

(ii) Find the area of the shaded region in terms of r.

[6]

Q7.

The diagram shows a metal plate OABCDEF consisting of 3 sectors, each with centre O. The radius of sector COD is 2r and angle COD is θ radians. The radius of each of the sectors BOA and FOE is r, and AOED and CBOF are straight lines.

- (i) Show that the area of the metal plate is $r^2(\pi + \theta)$. [3]
- (ii) Show that the perimeter of the metal plate is independent of θ . [4]

Q8.

The diagram shows a circle with radius r cm and centre O. The line PT is the tangent to the circle at P and angle $POT = \alpha$ radians. The line OT meets the circle at Q.

- (i) Express the perimeter of the shaded region PQT in terms of r and α . [3]
- (ii) In the case where $\alpha = \frac{1}{3}\pi$ and r = 10, find the area of the shaded region correct to 2 significant figures.

Q9.

The diagram shows triangle ABC where AB = 5 cm, AC = 4 cm and BC = 3 cm. Three circles with centres at A, B and C have radii 3 cm, 2 cm and 1 cm respectively. The circles touch each other at points E, F and G, lying on AB, AC and BC respectively. Find the area of the shaded region EFG.

[7]