
Circular Measure

Pure Mathematics 1 (9709)

Degrees and Radians

180 degrees = π radians

Degrees \rightarrow Radians : $\times by \frac{\pi}{180^0}$

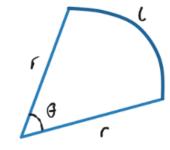
Radians \rightarrow Degrees : $\times by \frac{180^{\circ}}{\pi}$

Common angles

degrees	radians	degree
180°	TI .	30 ⁰
90 ⁰	女丌	60 ⁰
45 ⁰	47	120°
360 ⁰	271	150 ⁰

degrees	radians
30 ⁰	र्ग
60 ⁰	3 11
120 ⁰	311
150°	511

Common trigonometric ratios

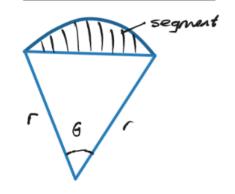

θ	sin	tan	cos
30° $\frac{\pi}{6}$	之	<u></u>	<u>√3</u> 2
45° $\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	1	<u>12</u> 2
60° $\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$	√3 2

Arc Length

To find the arc length *l* of a sector of a circle, we can use the formula

$$l = r \theta$$

r - radius of the circle θ - sector angle in radians


Areas

To find the area of a sector of a circle, we can use the formula

To find the area of a segment of a circle, we can use the formula

A segment = A sector - A triangle
$$A = \frac{1}{2}r^{2}\theta - \frac{1}{2}r^{2}\sin\theta$$

$$A = \frac{1}{2}r^2(\theta - \sin\theta)$$

Visit waltermaths.com for more learning resources.

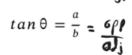
COURSES

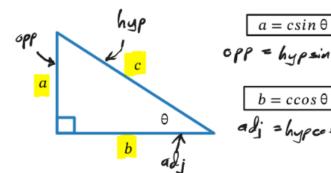
WORKSHEETS

TUTORING

PATREON

Circular Measure


Pure Mathematics 1 (9709)


Plane Trigonometry

Trigonometric ratios:

$$\cos\theta = \frac{b}{c} = \frac{alj}{hyp}$$

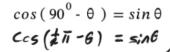
$$\sin \theta = \frac{a}{c} = \frac{6pp}{hyl}$$

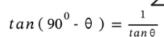
Pythagoras theorem:

$$c^2 = a^2 + b^2$$

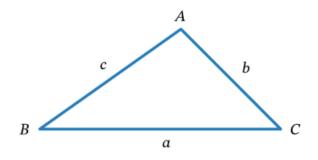
Common Pythagorean triples: <

hyp	opp [←]	⇒ adj
5	4	3
10	8	6
13	12	5
17	15	8
25	24	7
	5 10 13 17	5 4 10 8 13 12 17 15




SOH CAHIOA

Complementary angle relations:

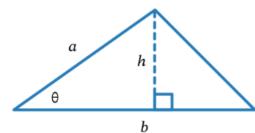

$$sin(90^{0} - \theta) = cos\theta$$

$$sin(2\pi - 6) = cos\theta$$

$$\tan\left(\frac{1}{2}\bar{h}-6\right)=\frac{1}{\tan\theta}$$

Sine Rule:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin a}{c}$$


or
$$\frac{sinA}{a} = \frac{sinB}{b} = \frac{sinC}{c}$$

Cosine Rule:

$$a^2 = b^2 + c^2 - 2bc\cos\theta$$

$$b^2 = a^2 + c^2 - 2accos\theta$$

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Area:

$$A = \frac{1}{2}bh$$

height know

or
$$A = \frac{1}{2}absin\theta$$

height

Visit waltermaths.com for more learning resources.

COURSES

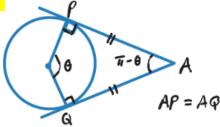
WORKSHEETS

TUTORING

PATREON

[4]

Circle Theorems and Properties


1. The angle in a semi-circle is a right angle.

2. The angle between a tangent and the radius at the point where the tangent touches the circle is a right angle.

3. Two tangents drawn from a point to a circle are equal.

Example 1

In the diagram, AB is an arc of a circle, centre O and radius 6 cm, and angle $AOB = \frac{1}{3}\pi$ radians. The line AX is a tangent to the circle at A, and OBX is a straight line.

(i) Show that the exact length of AX is
$$6\sqrt{3}$$
 cm. [1]

Find, in terms of π and $\sqrt{3}$,

(i)
$$tgn \frac{1}{3}\pi = \frac{Ax}{6}$$
 (ii) $A_{shaded} = A_{\Delta OAX} - A_{sector CAB}$

$$Ax = 6 ton \frac{1}{3}\pi$$

$$= \frac{1}{2} \times 6 \times 6 \sqrt{3} - \frac{1}{2} \times 6^2 \times \frac{1}{3}\pi$$

$$= 18\sqrt{3} - 6\pi$$
(iii) $P = arcAB + Ax + BX$

$$= 18\sqrt{3} - 6\pi$$

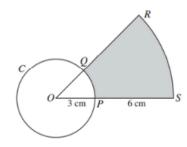
(iii)
$$l = \operatorname{arcAB} + Ax + Bx$$
 = $180^{3} - 611$
= $6 \times \frac{1}{3}\pi + 6\sqrt{3} + (\sqrt{6^{2} + (6\sqrt{3})^{2}} - 6)$
= $2\pi + 6\sqrt{3} + (\sqrt{144 - 6}) = 2\pi + 6\sqrt{3} + 6 - Axs$

Visit waltermaths.com for more learning resources.

COURSES

WORKSHEETS

TUTORING


PATREON

Circular Measure

Pure Mathematics 1 (9709)

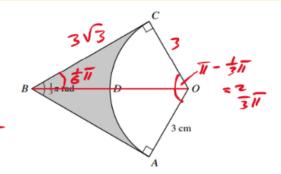
Example 2

The diagram shows a circle C with centre O and radius 3 cm. The radii OP and OQ are extended to S and R respectively so that ORS is a sector of a circle with centre O. Given that PS = 6 cm and that the area of the shaded region is equal to the area of circle C,

(i) show that angle
$$POQ = \frac{1}{4}\pi$$
 radians,

[3]

(ii) find the perimeter of the shaded region.


[2]

(i) A shaded =
$$A_{circlec}$$
 (ii) $P = 6 + 6 + 36 + 98$
 $\frac{1}{2} \times 9^2 \theta - \frac{1}{2} \times 3^2 \theta = 11 \times 3^2$ = $12 + 126$
 $\frac{1}{2} \theta (61 - 9) = 91$ = $12 + 31$
 $\frac{1}{3} \theta \theta = 91$
 $\theta = \frac{1}{36} \pi = \frac{1}{4} \pi$

Example 3

$$tqn = \frac{3}{BC}$$

$$Bc = \frac{3}{tant \pi}$$

In the diagram, OADC is a sector of a circle with centre O and radius 3 cm. AB and CB are tangents to the circle and angle $ABC = \frac{1}{3}\pi$ radians. Find, giving your answer in terms of $\sqrt{3}$ and π ,

(i) the perimeter of the shaded region,

[3]

(ii) the area of the shaded region.

(i)
$$f = BC + AB + arc ADC$$
 (ii) Asheled = $A_{OABC} - A_{OCC}$
= $2 \times \frac{3}{4an_{e}^{2} II} + \frac{3}{3} \times \frac{2}{3} II$
= $2 \times 3\sqrt{3} + 2\sqrt{1}$
= $6\sqrt{3} + 2\sqrt{1}$
(ii) Asheled = $A_{OABC} - A_{OCC}$
= $A = 2 \times \frac{1}{2} \times 3 \times 3\sqrt{3}$
= $A = 2 \times \frac{1}{2} \times 3 \times 3\sqrt{3}$
= $A = 2 \times \frac{1}{2} \times 3 \times 3\sqrt{3}$

Visit waltermaths.com for more learning resources.

COURSES

WORKSHEETS

TUTORING

PATREON

= 453 - 311