Trigonometry 1

Q1.

(i) Show that the equation

$$3(2\sin x - \cos x) = 2(\sin x - 3\cos x)$$

can be written in the form $\tan x = -\frac{3}{4}$.

[2]

(ii) Solve the equation $3(2\sin x - \cos x) = 2(\sin x - 3\cos x)$, for $0^{\circ} \le x \le 360^{\circ}$.

[2]

Q2.

- (i) Show that the equation $2 \sin x \tan x + 3 = 0$ can be expressed as $2 \cos^2 x 3 \cos x 2 = 0$. [2]
- (ii) Solve the equation $2 \sin x \tan x + 3 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.

[3]

Q3.

- (i) Prove the identity $\frac{\sin x \tan x}{1 \cos x} = 1 + \frac{1}{\cos x}$. [3]
- (ii) Hence solve the equation $\frac{\sin x \tan x}{1 \cos x} + 2 = 0$, for $0^{\circ} \le x \le 360^{\circ}$. [3]

Q4

Prove the identity

$$\tan^2 x - \sin^2 x = \tan^2 x \sin^2 x.$$
 [4]

Q5.

(i) Show that the equation $2 \tan^2 \theta \sin^2 \theta = 1$ can be written in the form

$$2\sin^4\theta + \sin^2\theta - 1 = 0.$$
 [2]

(ii) Hence solve the equation $2 \tan^2 \theta \sin^2 \theta = 1$ for $0^\circ \le \theta \le 360^\circ$. [4]

Trigonometry 1

Q6.

(i) Prove the identity
$$\left(\frac{1}{\sin \theta} - \frac{1}{\tan \theta}\right)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$$
. [3]

(ii) Hence solve the equation
$$\left(\frac{1}{\sin \theta} - \frac{1}{\tan \theta}\right)^2 = \frac{2}{5}$$
, for $0^\circ \le \theta \le 360^\circ$. [4]

Q7.

(i) Given that

$$3\sin^2 x - 8\cos x - 7 = 0,$$

show that, for real values of x,

$$\cos x = -\frac{2}{3}.$$
 [3]

(ii) Hence solve the equation

$$3\sin^2(\theta + 70^\circ) - 8\cos(\theta + 70^\circ) - 7 = 0$$

for
$$0^{\circ} \le \theta \le 180^{\circ}$$
. [4]

Q8.

(i) Prove the identity
$$\tan x + \frac{1}{\tan x} = \frac{1}{\sin x \cos x}$$
. [2]

(ii) Solve the equation
$$\frac{2}{\sin x \cos x} = 1 + 3 \tan x$$
, for $0^{\circ} \le x \le 180^{\circ}$. [4]

Q9.

(i) Prove the identity
$$\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$$
. [3]

(ii) Use this result to explain why
$$\tan \theta > \sin \theta$$
 for $0^{\circ} < \theta < 90^{\circ}$. [1]

Q10.

(i) Solve the equation
$$\sin 2x + 3\cos 2x = 0$$
 for $0^{\circ} \le x \le 360^{\circ}$. [5]

(ii) How many solutions has the equation
$$\sin 2x + 3\cos 2x = 0$$
 for $0^{\circ} \le x \le 1080^{\circ}$? [1]