Proof by induction 2 - MS

Q1. $a_1 > 5$ (given) $\Rightarrow H_1$ is true. **B**1 Assume H_k is true for some positive integer k, i.e. $a_k = 5 + \delta$, where $\delta > 0$. **B**1 $a_{k+1} - 5 = \frac{4a_k^2 + 25}{5a_k} - 5 = \frac{4a_k^2 + 25 - 25a_k}{5a_k} = \frac{(4a_k - 5)(a_k - 5)}{5a_k} > 0 , \Rightarrow a_{k+1} > 5$ M1A1 $a_{k+1} = \frac{4}{5}(5+\delta) + \frac{5}{5+\delta}, = 4 + \frac{4}{5}\delta + (1 - \frac{\delta}{5} + \frac{\delta^2}{25} - ...) \text{ for } 0 < \delta < 5$ (M1)(A1) = $5 + \frac{3}{5} \delta + 0(\delta^2) \ge a_{k+1} > 5$, ($\delta \ge 5$ is trivial). $H_k \Rightarrow H_{k+1}$ and H_1 is true, hence by mathematical induction, the result is true for all **A**1 (5) $n \in \mathbb{Z}^+$ (N.B. The minimum requirement is 'true for all positive integers'.) $a_{k+1} - a_k = \frac{5}{a_k} - \frac{1}{5}a_k$ M1 $\frac{5}{a_k}$ < 1 and $\frac{1}{5}$ a_k > 1 \Rightarrow $a_{k+1} - a_k$ < 0 \Rightarrow a_{k+1} < a_k A₁ (2) Total: 7

Q2.	For $n = 1$ $10 + 192 + 5 = 207 = 9 \times 23 \Rightarrow H_1$ is true.	B1
	Assume H _k is true for some positive integer $k \Rightarrow 10^n + 3.4^{n+2} + 5 = 9\alpha$	B1
	Let $f(n) = 10^n + 3.4^{n+2} + 5$	
	Hence $f(n+1)-f(n)=10^n(10-1)+3.4^{n+2}(4-1)$	M1
	$=9(10^n + 4^{n+2})$	
	$=9\beta$	A1
	Hence $f(n+1)(=9(\beta+\alpha)) \Rightarrow H_{k+1}$ is true	A1
	H_1 is true and $H_k \Rightarrow H_{k+1}$, hence by PMI H_n is true for all positive integers n .	A1
	N.B. Or can show $f(n+1) = 9(10\alpha - 2.4^{n+2} - 5)$ for M1A1A1 . (3 rd , 4 th &5 th	[6]
	marks)	

Q3.	With $n = 3$, $\frac{1}{2}n(n-3) = 0$	M1
	A triangle has no diagonals \Rightarrow H ₃ is true.	A1
	Assume H _k is true: A k-gon has $\frac{1}{2}k(k-3)$ diagonals for some integer ≥ 3	В1
	Adding an extra vertex, a further $(k-1)$ diagonals can be drawn.	M1
	$\frac{1}{2}k(k-3) + k - 1 = \frac{k^2 - 3k + 2k - 2}{2} = \frac{(k+1)(k-2)}{2}$ $= \frac{1}{2}(k+1)(k+1-3) \text{(So H}_k \Rightarrow H_{k+1})$ $\Rightarrow H_n \text{ is true for all integers } n \geqslant 3.$	A1 A1 [6]

Proof by induction 2 - MS

Q4. $\begin{pmatrix} n \\ r-1 \end{pmatrix} + \begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{(r-1)!(n-r+1)!} + \frac{n!}{r!(n-r)!} = \frac{n!}{(r-1)!(n-r)!} \begin{pmatrix} 1 \\ n-r+1 \end{pmatrix} + \frac{1}{r}$ $= \frac{n!}{(r-1)!(n-r)!} \begin{pmatrix} r+n-r+1 \\ r(n-r+1) \end{pmatrix} = \frac{(n+1)!}{r!(n-r+1)!} = \begin{pmatrix} n+1 \\ r \end{pmatrix}$ A1 $(a+x)^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} a + \begin{pmatrix} 1 \\ 1 \end{pmatrix} x = a+x \Rightarrow H_1 \text{ is true.}$ Assume H_k is true, i.e. $(a+x)^k = \begin{pmatrix} k \\ 0 \end{pmatrix} a^k + \begin{pmatrix} k \\ 1 \end{pmatrix} a^{k-1}x + \dots + \begin{pmatrix} k \\ r \end{pmatrix} a^{k-r}x^r + \dots + \begin{pmatrix} k \\ k \end{pmatrix} x^k$ Multiplying by (a+x), the coefficient of $a^{k-r+1}x^r$ is: $\begin{pmatrix} k \\ r-1 \end{pmatrix} + \begin{pmatrix} k \\ r \end{pmatrix} = \begin{pmatrix} k+1 \\ r \end{pmatrix}$ $\Rightarrow H_{k+1} \text{ is true.}$ Hence H_n is true for all positive integers.

A1 [4]

Q5.	(i)	$\frac{d^{n+1}}{dx^{n+1}} \left(x^{n+1} \ln x \right) = \frac{d^n}{dx^n} \left(x^{n+1} \cdot \frac{1}{x} + (n+1)x^n \ln x \right) =$	M1A1	
		$\frac{\mathrm{d}^n}{\mathrm{d}x^n}\Big(x^n+\big(n+1\big)x^n\mathrm{ln}x\Big)$		AG
			2	
	(ii)	Assume H_k is true $\Rightarrow \frac{d^k}{dx^k} (x^k \ln x) = k! \left\{ \ln x + 1 + \frac{1}{2} + \dots + \frac{1}{k} \right\}$	В1	Statement of H_k seen
		$\frac{d^{k+1}}{dx^{k+1}} (x^{k+1} \ln x) = \frac{d^k}{dx^k} (x^k + [k+1] x^k \ln x)$	M1	
		$= k! + [k+1]k! \left\{ \ln x + 1 + \frac{1}{2} + \dots + \frac{1}{k} \right\}$	A1	
		= $(k+1)!$ $\left\{ \ln x + 1 + \frac{1}{2} + \dots + \frac{1}{k+1} \right\} \Rightarrow H_{k+1}$ is true	A1	
		Check H_1 is true and H_k is true $\Rightarrow H_{k+1}$ is true; hence, by PMI, H_n is true for all positive integers n .	A1	
			5	

Q6.	(iii)	$\sum_{n=1}^{N} \ln(u_n - 3) = \sum_{n=1}^{N} \ln\left(4\left(\frac{5}{4}\right)^n\right)$ $= \left(\ln\frac{5}{4}\right) \sum_{n=1}^{N} n + \sum_{n=1}^{N} \ln 4$	M1	Alt method: $\sum_{n=1}^{N} \ln(u_n - 3) = \ln \prod 4 \left(\frac{5}{4}\right)^n M1$ $= \ln 4^N \prod_{1}^{N} \left(\frac{5}{4}\right)^n$ $= N\ln 4 + \ln \left(\frac{5}{4}\right)^{\sum n}$
		$= \frac{1}{2} N(N+1) \ln \frac{5}{4} + N \ln 4 \qquad \text{Use } \sum_{n=1}^{N} n = \frac{1}{2} N(N+1).$	M1	$= N\ln 4 + \frac{N(N+1)}{2}\ln(\frac{5}{4}) M1$
		$= N^2 \ln \frac{\sqrt{5}}{2} + N \ln \left(2\sqrt{5}\right) \Rightarrow a = \frac{\sqrt{5}}{2}, b = 2\sqrt{5} \text{ oe}$ Alt method: Writes series as an AP M1, uses summation formula M1 Correct answer A1	A1	$= N^2 \ln \frac{\sqrt{5}}{2} + N \ln (2\sqrt{5}) \Rightarrow a = \frac{\sqrt{5}}{2}, b = 2\sqrt{5}$ A1

Proof by induction 2 - MS

k] including then B0.
xpands the expression both.
as explicitly. Illowing the wer.
pe clearly
ut all linear correct form.
k, b k