Q1.			
6(i)	$R = 0.2g + 0.4t\sin\theta \ (= 2 + 0.24t)$ F = 0.5(2 + 0.24t) = 1 + 0.12t	M1	Note $\sin\theta = 0.6$ and $\cos\theta = 0.8$ ($\theta = 36.87^{\circ}$) Resolve vertically and use $F = \mu R$
	$0.4t\cos\theta = 1 + 0.12t$	M1	Resolve horizontally
	<i>t</i> = 5	A1	
		3	
6(ii)	$0.2 dv/dt = 0.4t \times 0.8 - (1 + 0.12t)$	M1	Use Newton's Second Law horizontally
	dv / dt = t - 5 AG	A1	
		2	
6(iii)	$\int dv = \int (t-5) dt$ $v = t^2 / 2 - 5t + c$	M1	Attempt to integrate the equation from part(ii)
	v = 0 when $t = 5$ hence $c = 12.5$	A1	Finds the constant of integration, c
	$v = 8^2 / 2 - 5 \times 8 + 12.5 = 4.5$	A1	Find <i>v</i> when $t = 8$
	$a = -0.5 \times 0.2g / 0.2 = -5 \text{ m s}^{-1} \text{ and } s = 4.5^2 / (2 \times 5)$	M1	Finds <i>a</i> and uses $v^2 = u^2 + 2as$
	<i>s</i> = 2.025 m	A1	
		5	

Q2.

3(i)	$0.4\frac{\mathrm{d}v}{\mathrm{d}t} = 0.8t - 2e^{-t}$	M1	Use Newton's Second Law horizontally
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 2\mathrm{t} - 5e^{-t}$	A1	AG
		2	
3(ii)	$\int dv = \int (2t - 5e^{-t}) dt$ $v = t^2 + 5e^{-t} (+ c)$	M1	Attempt to integrate the equation from part (i)
	t = 1 and $v = 8$ so $c = 5.16$	M1	Attempt to find the constant of integration, c
	$v = t^2 + 5e^{-t} + 5.16$ or $v = t^2 + 5e^{-t} + 7 - 5e^{-1}$	A1	
		3	
3(iii)	Evaluates v for $t = 0$	M1	
	$V = 10.2 \text{ ms}^{-1}$	A1	
		2	

Q3. 7(i) M1 Use Newton's Second Law downwards $0.2 dv/dt = 0.2 g + 0.6t - k e^{-t}$ A1 $dv/dt = 10 + 3t - 5 ke^{-t}$ AG Total: 2 7(ii) $dv/dt = 10 - 5k e^0 = 0$ M1 Recognise that dv/dt = 0 when t = 0M1 Attempts to solve the equation 7(ii) k = 2 A1 Total: 3 + t

7(iii)	$\int dv = \int (10 + 3t - 5k e^{-t}) dt$	M1	Attempts to integrate the equation from part i with k not replaced
	$[v = 10t + 3t^{2}/2 + 5e^{-t} + c, v = 0, t = 0 \text{ so } c = -5]$ v = 10t + 3t ² /2 + 5e ^{-t} - 5	A1	
	$\int dx = \int (10t + 3t^2/2 + 5e^{-t} - 5)dt$ $x = 5t^2 + t^3/2 - 5e^{-t} - 5t + c$	M1	Attempts to integrate again. Allow their k or just k not replaced
	x = 0, t = 0, so c = 5 and substitutes $t = 2x = 5 \times 2^{2} + 2^{3}/2 - 5e^{-2} - 5 \times 2 + 5$	M1	
	Height = 18.3 m	A1	
	Total:	5	

Q4.

4(i)	$T = 16(1.6 - 0.8 - x)/0.8 \ (= 16 - 20x)$	B1	Use $T = \lambda x/L$
	$0.5v dv/dx = 16(1.6 - 0.8 - x)/0.8 - 48x^2$	M1	Use Newton's Second Law horizontally
	$vdv/dx = 32 - 40x - 48x^2$ AG	A1	
		3	
1			
4(ii)	$48x^2 + 40x - 32 = 0$	M1	Put acceleration = 0 for maximum velocity
	<i>x</i> = 0.5	A1	
	$\int v dv = \int (32 - 40x - 48x^2) dx$ (v ² /2 = 32x - 40x ² /2 - 48x ³ /3 + c)	M1	Attempt to integrate the equation from part (i)
	$4.5^2/2 = 32 \times 0.5 - 20 \times 0.5^2 - 16 \times 0.5^3 + c, c = 1.125$	M1	Substitute $x = 0.5$, $v = 4.5$ to find c
	v = 1.5	A1	Use $x = 0$
		5	

Q5.			
7(i)) $0.2mg = 0.06 \times 8$	M1	Resolve along the plane
	m = 0.24 kg AG	A1	
		2	
7(ii) $m\frac{dv}{dt} = 0.06t - 0.2mg \text{ or } 0.24\frac{dv}{dt} = 0.06t - 0.2 \times 0.24g$	M1	Use N2L along the plane
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 0.25\mathrm{t} - 2$ AG	A1	
	$\int \mathrm{d}v = \int (0.25t - 2) \mathrm{d}t$	M1	Attempt to integrate
	$v=0.25t^2/2-2t+c$, Put $v=0$ and $t=4$ (leads to $c=6$)	M1	Attempt to find c
	Initial velocity = 6 m s^{-1}	A1	
		5	

Q6.

3(i)	$0.25\nu \frac{\mathrm{d}\nu}{\mathrm{d}x} = -k\nu^2 x^{-2} \rightarrow \nu \frac{\mathrm{d}\nu}{\mathrm{d}x} = -4k\nu^2 x^{-2}$	B1	AG
		1	
3(ii)	$\int \frac{\mathrm{d}v}{v} = -4k \int x^{-2} \mathrm{d}x$	M1	Attempt to integrate
	$\ln v = \frac{4k}{x}(+c)$	A1	
	$x = 0.8, v = 3$ hence $c = \ln 3 - 5k$	A1	Finds <i>c</i>
	$\ln v = \frac{4k}{x} + \ln 3 - 5k$	M1	
	$v = 3^{\left(\frac{4k}{x} - 5k\right)}$	A1	
		5	

Q7.

6(i)	$0.2v\frac{\mathrm{d}v}{\mathrm{d}x} = 0.09\sqrt{x} - 0.3$	M1	Use Newton's Second Law horizontally
	$v \frac{\mathrm{d}v}{\mathrm{d}x} = 0.45\sqrt{x} - 1.5$	A1	AG
		2	
6(ii)	$0 = 0.45 x^{\frac{1}{2}} - 1.5$	M1	Equate acceleration to zero
	$x = \frac{100}{9}$	A1	
		2	

6(iii)	$\int v dv = \int (0.45x^{\frac{1}{2}} - 1.5) dx$	M1	Attempt to integrate
	$\frac{v^2}{2} = \frac{0.45^{\frac{3}{2}}}{\frac{3}{2}} - 1.5x(+c) = 0.3x^{\frac{3}{2}} - 1.5x(+c)$	A1	
	$0.3\left(\frac{100}{9}\right)^{\frac{3}{2}} - 1.5\left(\frac{100}{9}\right) + c = 0$	M1	
	$c = \frac{50}{9}$	A1	
	$x=0, \ \frac{v^2}{2} > \frac{50}{9} \ \text{so} \ v > \frac{10}{3}$	A1	
		5	

Q8.

5(a)	$\frac{\mathrm{d}v}{3u-v} = k\mathrm{d}t$	M1
	$-\ln(3u - v) = kt + d$ $t = 0, v = u: d = -\ln 2u$	M1
	$v = 2u: t = \frac{1}{k} \ln 2$	A1
		3
5(b)	$v\frac{\mathrm{d}v}{\mathrm{d}x} = 3ku - kv \ [\Rightarrow \frac{v\mathrm{d}v}{3u - v} = k\mathrm{d}x]$	B1
	$\frac{(-(3u-v)+3u)dv}{3u-v} = kdx \text{ so } -v - 3u\ln(3u-v) = kx + c$	M1A1
	$x = 0, v = u$: $c = -u - 3u \ln 2u$	M1
	$v = 2u$: $x = \frac{u}{k}(3\ln 2 - 1)$	A1
		5

Q9.

7(a)	$v\frac{dv}{dx} = -\frac{100}{x^3} + \frac{200}{x^2}$ $\frac{v^2}{2} = \frac{50}{x^2} - \frac{200}{x} + A$	M1 A1	Correct equation and attempt to integrate Correct
	$x = 1, v = -10: A = 200$ $v^{2} = \frac{100(2x - 1)^{2}}{x^{2}}$	M1 M1	Use initial condition Rearrange to find v^2
	$v = \pm \frac{10(2x-1)}{x}$ and take negative sign to meet initial condition, so $v = \frac{10(1-2x)}{x}$	A1	Convincingly shown (no mention of ± scores A0) AG
		5	

7(b)	$\frac{xdx}{1-2x} = 10dt$	M1 A1	Rearrange and attempt to integrate
	$\frac{1}{2} \left(\frac{1}{1-2x} - 1 \right) dx = 10 dt$		
	$-\frac{1}{4}\ln 1-2x - \frac{x}{2} = 10t + B$		
	$t = 0, x = 1; B = -\frac{1}{2}$	M1	Use initial condition
	$2x-2 = -40t - \ln(1-2x)$ so $e^{-40t} = (2x-1)e^{2x-2}$	A1	Convincingly shown, working required AG
	For large values of $t, x \rightarrow \frac{1}{2}$	B1	CAO
		5	