Roots of Polynomial Equations 2

Q1.

1 The cubic equation $7x^3 + 3x^2 + 5x + 1 = 0$ has roots α , β , γ .

(a) Find a cubic equation whose roots are
$$\alpha^{-1}$$
, β^{-1} , γ^{-1} . [3]

(b) Find the value of
$$\alpha^{-2} + \beta^{-2} + \gamma^{-2}$$
. [2]

(c) Find the value of
$$\alpha^{-3} + \beta^{-3} + \gamma^{-3}$$
. [2]

Q2.

3 The cubic equation $x^3 + cx + 1 = 0$, where c is a constant, has roots α , β , γ .

(a) Find a cubic equation whose roots are
$$\alpha^3$$
, β^3 , γ^3 . [3]

(b) Show that
$$\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$$
. [3]

(c) Find the real value of
$$c$$
 for which the matrix $\begin{pmatrix} 1 & \alpha^3 & \beta^3 \\ \alpha^3 & 1 & \gamma^3 \\ \beta^3 & \gamma^3 & 1 \end{pmatrix}$ is singular. [5]

Q3.

1 The cubic equation $x^3 + bx^2 + cx + d = 0$, where b, c and d are constants, has roots α , β , γ . It is given that $\alpha\beta\gamma = -1$.

(a) State the value of
$$d$$
. [1]

(b) Find a cubic equation, with coefficients in terms of b and c, whose roots are $\alpha + 1$, $\beta + 1$, $\gamma + 1$. [3]

(c) Given also that
$$\gamma + 1 = -\alpha - 1$$
, deduce that $(c - 2b + 3)(b - 3) = b - c$. [4]

Q4.

3 The equation $x^4 - 2x^3 - 1 = 0$ has roots α , β , γ , δ .

(a) Find a quartic equation whose roots are α^3 , β^3 , γ^3 , δ^3 and state the value of $\alpha^3 + \beta^3 + \gamma^3 + \delta^3$.

(b) Find the value of
$$\frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^3} + \frac{1}{\delta^3}$$
.

(c) Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$. [2]

Roots of Polynomial Equations 2

[6]

Q5.

2 The cubic equation $2x^3 - 4x^2 + 3 = 0$ has roots α , β , γ . Let $S_n = \alpha^n + \beta^n + \gamma^n$.

(a) State the value of
$$S_1$$
 and find the value of S_2 . [3]

(b) (i) Express
$$S_{n+3}$$
 in terms of S_{n+2} and S_n . [1]

(ii) Hence, or otherwise, find the value of
$$S_4$$
. [2]

- (c) Use the substitution $y = S_1 x$, where S_1 is the numerical value found in part (a), to find and simplify an equation whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$. [3]
- (d) Find the value of $\frac{1}{\alpha + \beta} + \frac{1}{\beta + \gamma} + \frac{1}{\gamma + \alpha}$. [2]

Q6.

It is given that

$$\alpha + \beta + \gamma = 3$$
, $\alpha^2 + \beta^2 + \gamma^2 = 5$, $\alpha^3 + \beta^3 + \gamma^3 = 6$.

The cubic equation $x^3 + bx^2 + cx + d = 0$ has roots α , β , γ .

Find the values of
$$b$$
, c and d . [6]

Q7.

The cubic equation $x^3 + 2x^2 + 3x + 3 = 0$ has roots α , β , γ .

(a) Find the value of
$$\alpha^2 + \beta^2 + \gamma^2$$
. [2]

(b) Show that
$$\alpha^3 + \beta^3 + \gamma^3 = 1$$
. [2]

(c) Use standard results from the list of formulae (MF19) to show that

$$\sum_{r=1}^{n} \left((\alpha + r)^{3} + (\beta + r)^{3} + (\gamma + r)^{3} \right) = n + \frac{1}{4}n(n+1)\left(an^{2} + bn + c\right),$$

where a, b and c are constants to be determined.

Roots of Polynomial Equations 2

Q8.

The cubic equation $2x^3 + 5x^2 - 6 = 0$ has roots α , β , γ .

(a) Find a cubic equation whose roots are
$$\frac{1}{\alpha^3}$$
, $\frac{1}{\beta^3}$, $\frac{1}{\gamma^3}$. [3]

(b) Find the value of
$$\frac{1}{\alpha^6} + \frac{1}{\beta^6} + \frac{1}{\gamma^6}$$
.

(c) Find also the value of
$$\frac{1}{\alpha^9} + \frac{1}{\beta^9} + \frac{1}{\gamma^9}$$
. [2]

Q9.

The cubic equation $x^3 + 5x^2 + 10x - 2 = 0$ has roots α , β , γ .

(a) Find the value of
$$\alpha^2 + \beta^2 + \gamma^2$$
. [3]

(b) Show that the matrix
$$\begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{pmatrix}$$
 is singular. [4]

Q10.

The cubic equation $x^3 + bx^2 + d = 0$ has roots α , β , γ , where $\alpha = \beta$ and $d \neq 0$.

(a) Show that
$$4b^3 + 27d = 0$$
. [5]

(b) Given that
$$2\alpha^2 + \gamma^2 = 3b$$
, find the values of b and d. [3]