Q1.

3	(+/-) 1.045, (+/-) 0.313	B1, B1	1 correct z-value, the other correct z-value.
	$20.9 - \mu = -0.313 \ \sigma$ $30 - \mu = 1.045 \ \sigma$	M1	Valid attempt to solve 2 equations relating to μ , σ , 30, 20.9. No $\sqrt{\sigma}$, σ^2
	$\begin{split} \sigma &= 6.70 \\ \mu &= 23.0 \end{split}$	A1 A1 [5]	correct answer

Q2.

5 (i) $P(X=2) = (0.25)^2 \times (0.75)^6 \times {}^8C_2$ = 0.311	M1 A1 [2]	3 term binomial expression involving ⁸ C something, powers summing to 8 correct answer
(ii) $12 \times 0.25 = 3, < 5$ so not possible	B1 [1]	
(iii) mean = 40×0.25 (= 10) variance = $40 \times 0.25 \times 0.75$ (= 7.5)	В1	40×0.25 and $40 \times 0.25 \times 0.75$ seen, o.e.
$P(X \text{ at least } 13) = P\left(z > \frac{12.5 - 10}{\sqrt{7.5}}\right)$	M1	standardising, ±, with or without cc, must have sq rt
$= P(z > 0.913)$ $= 1 - \Phi(0.913)$ $= 1 - 0.8194$	M1 M1	continuity correction 12.5 or 13.5 correct area, i.e. < 0.5 legit
= 0.181	A1 [5]	correct answer

Q3.

2	(i) $P(x > 10.9) = P(z > \frac{10.9 - 11}{0.095})$ = $P(z > -1.0526)$	M1	Standardising, no cc, no sq rt
	= 0.8538 (0.854)	A1 [2]	Rounding to correct answer
	(ii) $P(\text{at least } 2 < 10.9) = 1 - P(0, 1)$	M1	Bin expression with Σ powers = 6, ${}^{6}C_{x}$
	$= 1 - (0.8538)^6 - {}^6C_1(0.1462)(0.8538)^5$	A1ft	p + q = 1. Reasonably correct unsimplified expression ft their (i)
	= 0.215	A1 [3]	Rounding to correct answer

Q4.

4 (i) $P(X < 2\mu) = P\left(z < \frac{2\mu - \mu}{\sigma}\right)$ = $P(z < \mu/\sigma) = P(z < 5/3)$	M1 A1	Standardising, and attempt to get 1 variable, no cc, no $\sqrt{\ }$, no sq $\pm 5/3$ seen oe
= 0.952	A1 [3]	Rounding to correct answer
(ii) $P\left(X < \frac{\mu}{3}\right) = P\left(z < \frac{-2\mu}{3\sigma}\right)$	M1	standardising attempt resulting in $z \le -\text{ some } \mu/\sigma$
$\frac{-2\mu}{3\sigma} = 1.047$ $\mu = -1.57\sigma$	B1 A1 [3]	allow $\pm \left(\frac{\mu/3 - \mu}{\sigma}\right)$ ± 1.047 seen correct single number, answer must have a minus sign and $\mu =\sigma$

Q5.

7 ((i) $0.431 = \frac{135 - \mu}{\sigma}$	В1	One ±z-value correct, accept 0.430
		B1	A second ±z-value correct
	$-0.842 = \frac{127 - \mu}{\sigma}$	M1	Solving two equations relating μ , σ , 135,
			127 and their z-values (must be z-values)
	σ = 6.29	A1	Correct answer accept 6.28
	$\mu = 132$	A1 [5]	Correct answer
((ii) $P(X < 145) = P\left(z < \frac{145 - 132.3}{6.284}\right)$	M1	Standardising no sq rt no cc
	=P(z < 2.023)	M1	Correct use of normal tables
	= 0.978	A1 [3]	Answer rounding to 0.978 or 0.979
((iii) $p = 1/3$		
	P(at least 2) = 1 - P(0, 1)	M1	Binomial expression with powers summing to 8 and ⁸ C _{something} . (any p)
	= $1 - [(2/3)^8 + {}^8C_1 \times (1/3)^1 (2/3)^7]$	A1	Correct unsimplified expression
	= 0.805	A1 [3]	Answer rounding to 0.805

Q6.

3 (i) $P(X > 20) = P(z > -6.4/3.7)$ = $P(z > -1.730)$	M1	Standardising no cc no sq rt
= 0.9582	A1	Prob rounding to 0.958
Number of students = 335 or 336	A1ft [3]	Correct answer ft their prob, must be integer
(ii) P(very slow) = 0.05	В1	0.05 or 0.95 seen
$P(0, 1, 2) = (0.95)^8 + {}^8C_1(0.05)^1(0.95)^7 + {}^8C_2(0.05)^2(0.95)^6$	M1	Binomial term with ${}^{8}C_{r}p^{r}(1-p)^{8-r}$ seen any p
= 0.6634 + 0.2793 + 0.0515 $= 0.994$	A1 [4]	Correct expression for P(0, 1, 2), p close to 0.05 Answer rounding to 0.994
	۲.1	

Q7.

5	(i)	Zotoc: $z = \frac{367 - 320}{21.6} = 2.176$ Ganmor: $z = \frac{367 - 350}{7.5} = 2.267$	M1	Standardising either car's fuel, no cc, no sq, no $\sqrt{}$
		P(Zotoc) = 0.985	A1	Correct answer
		P(Ganmor) = 0.988	A1 [3]	Correct answer
	(ii)	z = 0.23	B1	± 0.23 seen
		$0.23 = \frac{x - 320}{21.6}$	M1	Standardising either car, no cc, no sq rt, no sq
		x = 324.968	M1ind	320 + d - 320 i.e. just d on num
		<i>d</i> = 4.97	A1 [4]	Correct answer, -4.97 gets A0

Q8.

6	(i)	constant/given prob, independent trials, fixed/given no. of trials, only two outcomes	B1 B1 [2]	One option correct Three options correct
	(ii)	P(8, 9, 0, 1) =	M1	One term seen involving $(0.3)^x(0.7)^{9-x}(^9C_x)$
		${}^{9}C_{8}(0.3)^{8}(0.7) + (0.3)^{9} + (0.7)^{9} + {}^{9}C_{1}(0.3)(0.7)^{8}$	A1	Correct unsimplified expression
		= 0.196	A1 [3]	Correct answer
	(iii)	mean = $90 \times 0.3 = 27$ var = 18.9 $P(X > 35) = 1 - \Phi\left(\frac{35.5 - 27}{\sqrt{18.9}}\right)$	B1 M1	Expressions for 27 and 18.9 (4.347) seen Standardising one expression, must have sq rt in denom, cc not necessary
		= 1 - $\Phi(1.955)$ = 0.0253 $P(X < 27) = \Phi\left(\frac{26.5 - 27}{\sqrt{18.9}}\right) = 1 - \Phi(0.115)$	M1 M1	Continuity correction applied at least once $(1-\Phi_1)+(1-\Phi_2) \ \text{accept} \ (0.0329+0.5)$ if no cc
		= 0.4542 Total prob = 0.480 accept 0.48	A1 [5]	Rounding to correct answer

Q9.

7 (i) z = 0.807	В1	0.807 seen
$0.807 = \frac{10 - 8.2}{\sigma}$	M1	standardising, must have σ , no sq rt, no
s = 2.23	A1 [3]	cc and a z-value correct answer
(ii) $P(> 1 \text{ min from mean}) = P(\text{mod } z > \frac{1}{2.23})$	M1	standardising, their sd, no cc and adding two areas
= P(z > 0.4484) = (1 - 0.6729) \times 2	M1	using $1 - \Phi(z)$
$= (1 - 0.6729) \times 2$ $= 0.654$	A1 [3]	correct answer
(iii) P(> 2 longer) = 1 – P(0, 1, 2 longer)	M1	binomial term ${}^{6}C_{x}p^{x}(1-p)^{6-x}$
= 1 - $\{(0.79)^6 + {}^6C_1(0.21)(0.79)^5 + {}^6C_2(0.21)^2(0.79)^4\}$	A1	correct unsimplified answer
= 0.112	A1 [3]	correct answer

(iv) $\mu = 35 \times 0.5 = 17.5$ $\sigma^2 = 35 \times 0.5 \times 0.5 = 8.75$	В1	17.5 and 8.75 or $\sqrt{8.75}$ seen
$P(X < 16) = \Phi\left(\frac{15.5 - 17.5}{\sqrt{8.75}}\right)$	M1 M1	standardising, with or without cc, must have sd in denom continuity correction 15.5 or 16.5 only, seen
= $1 - \Phi(0.676)$ = $1 - 0.7505$ = $0.2495 (0.249 \text{ or } 0.250)$	M1 A1 [5]	using $1 - \Phi(z)$ correct answer
OR ${}^{35}C_00.5^00.5^{35} + {}^{35}C_10.5^10.5^{34} + {}^{35}C_20.5^20.5^{33} +$ = $8582372584/2^{35} = 0.250$	M1 A1 M1 A1 A1	binomial term ${}^{35}C_x0.5^x0.5^{35-x}$ at least 2 correct terms $(x \triangleright 0)$ seen summing 16 or 17 terms correct expression correct answer

Q10.

5 (a) $z > \frac{2\mu - \mu}{\sigma} = \frac{\mu}{\sigma} = \frac{7\sigma^2}{3\sigma}$	M1	Standardising attempt resulting in $z > \text{some } \mu/\sigma$
$\frac{7\sigma}{3} = 1.272$	M1 B1	Substituting to eliminate μ or σ 1.272 seen
$\sigma = 0.545$ $\mu = 0.693$	A1 [4]	Both answers correct
(b) $P(X < a + 33) = 0.75$ $z = 0.674$	M1 A1	Using 0.75 oe ± 0.674 seen
$\frac{a+33-33}{\sqrt{21}} = 0.674$	M1	Standardising, no cc, must have sq rt
a = 3.09	A1 [4]	Correct answer