

Q1.

The points A, B, C have position vectors

$$-\mathbf{i}+\mathbf{j}+2\mathbf{k}$$
, $-2\mathbf{i}-\mathbf{j}$, $2\mathbf{i}+2\mathbf{k}$,

respectively, relative to the origin O.

- (a) Find the equation of the plane ABC, giving your answer in the form ax + by + cz = d. [5]
- (b) Find the perpendicular distance from O to the plane ABC. [2]
- (c) Find the acute angle between the planes *OAB* and *ABC*. [4]

Q2.

The points A, B, C have position vectors

$$-2\mathbf{i}+2\mathbf{j}-\mathbf{k}$$
, $-2\mathbf{i}+\mathbf{j}+2\mathbf{k}$, $-2\mathbf{j}+\mathbf{k}$,

respectively, relative to the origin O.

- (a) Find the equation of the plane ABC, giving your answer in the form ax + by + cz = d. [5]
- **(b)** Find the acute angle between the planes *OBC* and *ABC*. [4]

The point D has position vector $t\mathbf{i} - \mathbf{j}$.

(c) Given that the shortest distance between the lines AB and CD is $\sqrt{10}$, find the value of t. [6]

Q3.

The points A, B and C have position vectors \mathbf{i} , $2\mathbf{j}$ and $4\mathbf{k}$ respectively, relative to an origin O. The point N is the foot of the perpendicular from O to the plane ABC. The point P on the line-segment ON is such that $OP = \frac{3}{4}ON$. The line AP meets the plane OBC at Q.

- (i) Find a vector perpendicular to the plane ABC and show that the length of ON is $\frac{4}{\sqrt{(21)}}$. [4]
- (ii) Find the position vector of the point Q. [5]
- (iii) Show that the acute angle between the planes ABC and ABQ is $\cos^{-1}(\frac{2}{3})$. [5]

Q4.

The position vectors of the points A, B, C, D are

$$2i + 4j - 3k$$
, $-2i + 5j - 4k$, $i + 4j + k$, $i + 5j + mk$,

respectively, where m is an integer. It is given that the shortest distance between the line through A and B and the line through C and D is A.

- (a) Show that the only possible value of m is 2. [7]
- **(b)** Find the shortest distance of D from the line through A and C. [3]
- (c) Show that the acute angle between the planes ACD and BCD is $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$. [4]

Q5.

Let *t* be a positive constant.

The line l_1 passes through the point with position vector $t\mathbf{i} + \mathbf{j}$ and is parallel to the vector $-2\mathbf{i} - \mathbf{j}$. The line l_2 passes through the point with position vector $\mathbf{j} + t\mathbf{k}$ and is parallel to the vector $-2\mathbf{j} + \mathbf{k}$.

It is given that the shortest distance between the lines l_1 and l_2 is $\sqrt{21}$.

(a) Find the value of
$$t$$
. [5]

The plane Π_1 contains l_1 and is parallel to l_2 .

(b) Write down an equation of
$$\Pi_1$$
, giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$. [1]

The plane Π_2 has Cartesian equation 5x - 6y + 7z = 0.

(c) Find the acute angle between
$$l_2$$
 and Π_2 . [3]

(d) Find the acute angle between
$$\Pi_1$$
 and Π_2 . [3]

Q6.

The lines l_1 and l_2 have equations $\mathbf{r} = -\mathbf{i} - 2\mathbf{j} + \mathbf{k} + s(2\mathbf{i} - 3\mathbf{j})$ and $\mathbf{r} = 3\mathbf{i} - 2\mathbf{k} + t(3\mathbf{i} - \mathbf{j} + 3\mathbf{k})$ respectively.

The plane Π_1 contains l_1 and the point P with position vector $-2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$.

(a) Find an equation of
$$\Pi_1$$
, giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$. [2]

The plane Π_2 contains l_2 and is parallel to l_1 .

(b) Find an equation of
$$\Pi_2$$
, giving your answer in the form $ax + by + cz = d$. [4]

(c) Find the acute angle between
$$\Pi_1$$
 and Π_2 . [5]

(d) The point Q is such that $\overrightarrow{OQ} = -5\overrightarrow{OP}$.

Find the position vector of the foot of the perpendicular from the point Q to Π_2 . [4]

Q7.

The plane Π has equation $\mathbf{r} = -2\mathbf{i} + 3\mathbf{j} + 3\mathbf{k} + \lambda(\mathbf{i} + \mathbf{k}) + \mu(2\mathbf{i} + 3\mathbf{j})$.

(a) Find a Cartesian equation of
$$\Pi$$
, giving your answer in the form $ax + by + cz = d$. [4]

The line *l* passes through the point *P* with position vector $2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$ and is parallel to the vector \mathbf{k} .

(b) Find the position vector of the point where
$$l$$
 meets Π . [3]

(c) Find the acute angle between
$$l$$
 and Π . [3]

(d) Find the perpendicular distance from P to Π .

Q8.

The points A, B, C have position vectors

$$2\mathbf{i}+2\mathbf{j}$$
, $-\mathbf{j}+\mathbf{k}$ and $2\mathbf{i}+\mathbf{j}-7\mathbf{k}$

respectively, relative to the origin O.

- (a) Find an equation of the plane OAB, giving your answer in the form $\mathbf{r.n} = p$. [3] The plane Π has equation x 3y 2z = 1.
- (b) Find the perpendicular distance of Π from the origin. [1]
- (c) Find the acute angle between the planes OAB and Π . [3]
- (d) Find an equation for the common perpendicular to the lines OC and AB. [10]

Q9.

The points A, B, C have position vectors

$$4i-4j+k$$
, $-4i+3j-4k$, $4i-j-2k$,

respectively, relative to the origin O.

- (a) Find the equation of the plane ABC, giving your answer in the form ax + by + cz = d. [5]
- **(b)** Find the perpendicular distance from *O* to the plane *ABC*. [2]
- (c) The point D has position vector $2\mathbf{i} + 3\mathbf{j} 3\mathbf{k}$.
 - Find the coordinates of the point of intersection of the line *OD* with the plane *ABC*. [3]

Q10.

The position vectors of the points A, B, C, D are

$$7\mathbf{i} + 4\mathbf{j} - \mathbf{k}$$
, $11\mathbf{i} + 3\mathbf{j}$, $2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$, $2\mathbf{i} + 7\mathbf{j} + \lambda\mathbf{k}$

respectively.

(a) Given that the shortest distance between the line AB and the line CD is 3, show that $\lambda^2 - 5\lambda + 4 = 0$. [7]

Let Π_1 be the plane *ABD* when $\lambda = 1$.

Let Π_2 be the plane *ABD* when $\lambda = 4$.

- (b) (i) Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$. [2]
 - (ii) Find an equation of Π_2 , giving your answer in the form ax + by + cz = d. [4]
- (c) Find the acute angle between Π_1 and Π_2 . [5]