Q1.

5	(i)	$0.4v dv/dx = 0.4g \sin 30 - 0.6x$	В1		Newton's Second Law, - sign essential
		$\int v dv = \int (5 - 1.5x) dx$	M1		Accept uncancelled integration
		$v^2/2 = 5x - 1.5x^2/2 \text{ (+ c)}$	A1		Accept omission of c
		$0.4g\sin 30 - 0.6x = 0$	M1		Maximum speed when acceleration = 0
		$x = 3\frac{1}{3}$	A1		Accept 10/3
		$v^2/2 = 5 \times 10/3 - 1.5 \times (10/3)^2/2$	M1		
		$v = 4.08 \text{ms}^{-1}$	A1	[7]	
	(ii)	$0 = 5x - 1.5x^2/2$	M1		Uses $v = 0$ appropriately
		$x = 6\frac{2}{3} = 6.67$	A1	[2]	Not 20/3 [9]

Q2.

4 (i) $0.25 dv/dt = -3t$	M1		Newton's Second Law, - sign essential
$v = -12t^2/2 \ (+c)$	A1		Accept uncancelled form
$0 = 12 \times 3^2/2 + c$	M1		Appropriate use of $v = 0$, $t = 3$
Initial speed = $54 \mathrm{ms}^{-1}$	A1	[4]	Goes beyond $c = 54$
(ii) $\int dx = \int (54 - 6t^2) dt$	M1		Separates variables, integrates v
$x = [54t - 6t^3/3]_0^3$	A1√		\wedge candidates value [ν in (i)]
$x = 108 \mathrm{m}$	A1	[3]	[7]

Q3.

3 (i) $0.2v dv/dx = -0.4x$	M1		Newton's Second Law, - sign essential
$v^2/2 = -2x^2/2 \ (+ c)$	A1		Accept uncancelled form
$0 = -2 \times 2.5^2 / 2 + c \rightarrow c = 6.25$	M1		
$KE = 0.2 \times 6.25 = 1.25 J$	A1	[4]	$v = 3.54 \mathrm{ms}^{-1}$
(ii) $2^2/2 = -2x^2/2 + 6.25$	М1		 v = 2 in accurate integral attempt at limits or finding arbitrary constant e.g. in (i)
x = 2.06	A1	[2]	[6]

Q4.

3	(i)	$0.2 \mathrm{d}v/\mathrm{d}t = 0.2g - 0.8v$		M1		Use Newton's Second Law, - sign essential
		$a = (\mathrm{d}v/\mathrm{d}t =)10 - 4v$	AG	A1	[2]	
	(ii)	$\int 1/(10-4v) \mathrm{d}v = \int \mathrm{d}t$		M1		Separates variables and attempts to integrate
		$\frac{-1}{4}\ln{(10-4v)} = t(+c)$		A1		
		$\left[c = \frac{-1}{4} \ln 10\right]$		M1		Attempts to find the constant or uses the correct limits
		$\frac{-1}{4}\ln{(10-4\nu)} = 0.6 - \frac{1}{4}\ln{4}$		A1		
		v = 2.27		A1	[5]	

Q5.

6 (i)	$0.4 dv/dt = T - 0.4g \times 0.5 - 0.9v$	B1		Not awarded for N2L round corner
	0.2 dv/dt = 0.2g - T - 0.9v	B1		Not awarded for N2L round corner
	$0.6 dv/dt = 0.2g - 0.4g \times 0.5 - 1.8v$	M1		Awarded for N2L round corner
	dv/dt = -3v AG	A1	[4]	

(ii)	$\int dv/v = \int -3dt$	M1		Separates variables, integrates
	$\ln v = -3t \ (+c)$	A1		Accurare integrals
	$c = \ln 5$	B1		Or $[\ln v]_5^{2.5} = [-3t]_0^t$ implied
	t = 0.231	A1		(ln2)/3
	$\int dx = \int e^{c-3t} dt$	M1		Attempts integration of v(t)
	$x = -[e^{c-3t}]_0^{0.231}/3$	A1		Correct integral and limits
	x = 0.833 m	A1	[7]	5/6 m
	OR			
	$v dv/dx = -3v, dv/dx = -3$ $\int dv = \int -3dx$	M1		Attempts integration
	$[v]_5^{2.5} = [-3x]_0^x$	A1		Correct integral and limits
	x = 0.833m	A1		Accept 5/6m

Q6.

	4	(i)	a = 10 - 0.45v	AG	B1	[1]	0.2a = 0.2g - 0.09v or similar should be seen	
		(ii)	$\int 1/(10-0.45v)dv = \int dt$		M1		An attempt at integration needed	
			$-\ln(10 - 0.45v)/0.45 = t (+c)$		A1			
			t = 0, $v = 4$, $c = -4.67(58)$		DM1		Attempts to find c or uses correct limits	
			$-\ln(10 - 0.45v)/0.45 = 1.5 - 4.6$	676	M1		Uses t = 1.5 and evaluated c	
_							,	

A1

[5]

v = 12.9 or 13.0

Q7.

_					
7 (i)	$0.5a = 0.16e^{x}$	M1		N2L, single force	
	$a = 0.32e^x$	A1			
	$\int v dv = \int 0.32e^x dx$	M1		Forms integral from $vdv/dx = a$	
	$v^2/2 = 0.32e^x \text{ (+c)}$	A1		Award if c omitted	
	x = 0, $v = 0.8$ hence $c = 0$, so $v^2 = 0.64e^x$	M1		Trying to find the value of c	
	$v = 0.8e^{x/2}$ AG	A1	[6]		
OR	$dv/dt = 0.8e^{x/2} x dx/dt$	M1		Uses chain rule on given answer	
	$dv/dt = 0.4e^{x/2}.v$	A1		Maybe implied by later work	
	$x = 0, v = 0.8e^{0}$	M1		Finding speed where $x = 0$	
	x=0, v=0.8	A1			
	$0.5 dv/dt = (0.2e^{x/2})(0.8e^{x/2})$	M1		Expresses "ma" in terms of x	
	$0.5acc^n = 0.16e^x$	A1			
(ii)	$\int e^{-x/2} dx = \int 0.8dt$	M1		Forms integral from $dx/dt = 0.8e^{x/2}$	
	$e^{-x/2}/(-1/2) = 0.8t (+c)$	A1		Award if c omitted	
	$x = 0$, $t = 0$, hence $c = -2$ and $-2e^{-1.4/2} = 0.8t - 2$	M1		Finding c and using $x = 1.4$ or $[e^{-x/2}/(-1/2)]_0^{1.4} = 0.8t$	

[4] 1.2585..

[10]

t = 1.26 s

Q8.

3	(i)	$0.8v dv/dx = 4e^{-x} - 2.4x^2$	M1		N2L, terms different signs	
		$v dv/dx = 5e^{-x} - 3x^2 $ AG	A1	[2]		
	(ii)	$\int v dv = \int (5e^{-x} - 3x^2) dx$	M1		Attempts integration	
		$v^2/2 = -5e^{-x} - 3x^3/3$ (+c)	A1		Accept c omitted	
		x = 0, $v = 6$, hence $c = 23$	B1		Or uses limits 0 and 2	
		$v^2/2 = -5e^{-2} - 3x2^3/3 + 23$	M1		Puts $x = 2$ in $v(x)$ expression	
		$v = 5.35 \text{ ms}^{-1}$	A1	[5]	v = 5.352	[7]

Q9.

3 (i)	$0.2a = 0.42$ $v = (2.1 \times 1) = 2.1$	M1 A1	[2]	Newton's Second Law and $v = u + at$
(ii)	$0.2 dv / dt = 0.42 - 0.32t$ $[v]_{2.1}^{v} = [2.1t - 0.8t^{2}]_{1}^{2}$	M1 M1		Newton's Second Law with $a = dv / dt$
	v = 1.8	A1	[3]	
(iii)	$v = \int (0.42 - 0.32t + 0.06t^2) dt / 0.2$	M1		
	$v = \int (0.42 - 0.32t + 0.06t^2) dt / 0.2$ $v = \left[0.42t - 0.16t^2 + 0.02t^3 \right]_0^3 / 0.2 \text{ or}$	M1		For attempt to integrate and correct limits
	$\left[v\right]_{1.8}^{v} = \left[0.42t - 1.16t^{2} + 0.02t^{3}\right]_{2}^{3}/0.2$			seen
	v = 1.8, so no change	A1	[3]	