Quadratics 2

Q1.

Find the set of values of k for which the line y = 2x - k meets the curve $y = x^2 + kx - 2$ at two distinct points. [5]

Q2.

(i) Express
$$x^2 - 2x - 15$$
 in the form $(x + a)^2 + b$. [2]

Q3.

(i) Express
$$9x^2 - 12x + 5$$
 in the form $(ax + b)^2 + c$. [3]

Q4.

The function f is defined by $f: x \mapsto 2x^2 - 6x + 5$ for $x \in \mathbb{R}$.

(i) Find the set of values of p for which the equation
$$f(x) = p$$
 has no real roots. [3]

The function g is defined by $g: x \mapsto 2x^2 - 6x + 5$ for $0 \le x \le 4$.

(ii) Express
$$g(x)$$
 in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]

Q5.

Express
$$2x^2 - 12x + 7$$
 in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]

Q6.

A line has equation y = 2x - 7 and a curve has equation $y = x^2 - 4x + c$, where c is a constant. Find the set of possible values of c for which the line does not intersect the curve. [3]

Q7.

(i) Express
$$x^2 + 6x + 2$$
 in the form $(x + a)^2 + b$, where a and b are constants. [2]

(ii) Hence, or otherwise, find the set of values of x for which
$$x^2 + 6x + 2 > 9$$
. [2]

Quadratics 2

Q8.

The function f is defined by $f: x \mapsto 6x - x^2 - 5$ for $x \in \mathbb{R}$.

- (i) Find the set of values of x for which $f(x) \le 3$. [3]
- (ii) Given that the line y = mx + c is a tangent to the curve y = f(x), show that $4c = m^2 12m + 16$.

The function g is defined by $g: x \mapsto 6x - x^2 - 5$ for $x \ge k$, where k is a constant.

(iii) Express
$$6x - x^2 - 5$$
 in the form $a - (x - b)^2$, where a and b are constants. [2]

Q9.

A curve has equation $y = \frac{1}{x} + c$ and a line has equation y = cx - 3, where c is a constant.

- (i) Find the set of values of c for which the curve and the line meet. [4]
- (ii) The line is a tangent to the curve for two particular values of c. For each of these values find the x-coordinate of the point at which the tangent touches the curve. [4]

Q10.

The equation of a curve is $y = x^2 - 6x + k$, where k is a constant.

- (i) Find the set of values of k for which the whole of the curve lies above the x-axis. [2]
- (ii) Find the value of k for which the line y + 2x = 7 is a tangent to the curve. [3]

Q11.

The function f is defined by $f: x \mapsto 7 - 2x^2 - 12x$ for $x \in \mathbb{R}$.

(i) Express
$$7 - 2x^2 - 12x$$
 in the form $a - 2(x + b)^2$, where a and b are constants. [2]

Q12.

Showing all necessary working, solve the equation
$$4x - 11x^{\frac{1}{2}} + 6 = 0$$
. [3]