

Q1.

- (i) It is given that $2 \tan 2x + 5 \tan^2 x = 0$. Denoting $\tan x$ by t, form an equation in t and hence show that either t = 0 or $t = \sqrt[3]{(t + 0.8)}$.
- (ii) It is given that there is exactly one real value of t satisfying the equation $t = \sqrt[3]{(t+0.8)}$. Verify by calculation that this value lies between 1.2 and 1.3.
- (iii) Use the iterative formula $t_{n+1} = \sqrt[3]{(t_n + 0.8)}$ to find the value of t correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
- (iv) Using the values of t found in previous parts of the question, solve the equation

$$2\tan 2x + 5\tan^2 x = 0$$

for
$$-\pi \le x \le \pi$$
.

Q2.

In the diagram, ABC is a triangle in which angle ABC is a right angle and BC = a. A circular arc, with centre C and radius a, joins B and the point M on AC. The angle ACB is θ radians. The area of the sector CMB is equal to one third of the area of the triangle ABC.

(i) Show that θ satisfies the equation

$$\tan \theta = 3\theta$$
. [2]

(ii) This equation has one root in the interval $0 < \theta < \frac{1}{2}\pi$. Use the iterative formula

$$\theta_{n+1} = \tan^{-1}(3\theta_n)$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

Q3.

The diagram shows the curve $y = e^{-\frac{1}{2}x^2} \sqrt{(1+2x^2)}$ for $x \ge 0$, and its maximum point M.

(i) Find the exact value of the x-coordinate of M. [4]

(ii) The sequence of values given by the iterative formula

$$x_{n+1} = \sqrt{\ln(4 + 8x_n^2)},$$

with initial value $x_1 = 2$, converges to a certain value α . State an equation satisfied by α and hence show that α is the x-coordinate of a point on the curve where y = 0.5. [3]

(iii) Use the iterative formula to determine α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
[3]

Q4.

The diagram shows the curve $y = x^4 + 2x^3 + 2x^2 - 4x - 16$, which crosses the x-axis at the points $(\alpha, 0)$ and $(\beta, 0)$ where $\alpha < \beta$. It is given that α is an integer.

(i) Find the value of α . [2]

(ii) Show that β satisfies the equation $x = \sqrt[3]{(8-2x)}$. [3]

(iii) Use an iteration process based on the equation in part (ii) to find the value of β correct to 2 decimal places. Show the result of each iteration to 4 decimal places. [3]

Q5.

The sequence of values given by the iterative formula

$$x_{n+1} = \frac{x_n(x_n^3 + 100)}{2(x_n^3 + 25)},$$

with initial value $x_1 = 3.5$, converges to α .

- (i) Use this formula to calculate α correct to 4 decimal places, showing the result of each iteration to 6 decimal places.
- (ii) State an equation satisfied by α and hence find the exact value of α . [2]

Q6.

The diagram shows the curves $y = e^{2x-3}$ and $y = 2 \ln x$. When x = a the tangents to the curves are parallel.

- (i) Show that a satisfies the equation $a = \frac{1}{2}(3 \ln a)$. [3]
- (ii) Verify by calculation that this equation has a root between 1 and 2. [2]
- (iii) Use the iterative formula $a_{n+1} = \frac{1}{2}(3 \ln a_n)$ to calculate a correct to 2 decimal places, showing the result of each iteration to 4 decimal places. [3]

Q7.

In the diagram, A is a point on the circumference of a circle with centre O and radius r. A circular arc with centre A meets the circumference at B and C. The angle OAB is θ radians. The shaded region is bounded by the circumference of the circle and the arc with centre A joining B and C. The area of the shaded region is equal to half the area of the circle.

(i) Show that
$$\cos 2\theta = \frac{2\sin 2\theta - \pi}{4\theta}$$
. [5]

(ii) Use the iterative formula

$$\theta_{n+1} = \frac{1}{2}\cos^{-1}\left(\frac{2\sin 2\theta_n - \pi}{4\theta_n}\right),\,$$

with initial value $\theta_1 = 1$, to determine θ correct to 2 decimal places, showing the result of each iteration to 4 decimal places. [3]

Q8.

It is given that $\int_0^p 4xe^{-\frac{1}{2}x} dx = 9$, where p is a positive constant.

(i) Show that
$$p = 2 \ln \left(\frac{8p + 16}{7} \right)$$
. [5]

(ii) Use an iterative process based on the equation in part (i) to find the value of p correct to 3 significant figures. Use a starting value of 3.5 and give the result of each iteration to 5 significant figures.
[3]

[3]

Q9.

(i) By sketching each of the graphs $y = \csc x$ and $y = x(\pi - x)$ for $0 < x < \pi$, show that the equation

$$\csc x = x(\pi - x)$$

has exactly two real roots in the interval $0 < x < \pi$.

$$1 + x^2 \sin x$$

- (ii) Show that the equation $\csc x = x(\pi x)$ can be written in the form $x = \frac{1 + x^2 \sin x}{\pi \sin x}$. [2]
- (iii) The two real roots of the equation $\csc x = x(\pi x)$ in the interval $0 < x < \pi$ are denoted by α and β , where $\alpha < \beta$.
 - (a) Use the iterative formula

$$x_{n+1} = \frac{1 + x_n^2 \sin x_n}{\pi \sin x_n}$$

to find α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

(b) Deduce the value of β correct to 2 decimal places.

[1]

Q10.

In the diagram, A is a point on the circumference of a circle with centre O and radius r. A circular arc with centre A meets the circumference at B and C. The angle OAB is equal to x radians. The shaded region is bounded by AB, AC and the circular arc with centre A joining B and C. The perimeter of the shaded region is equal to half the circumference of the circle.

(i) Show that
$$x = \cos^{-1}\left(\frac{\pi}{4+4x}\right)$$
. [3]

- (ii) Verify by calculation that x lies between 1 and 1.5. [2]
- (iii) Use the iterative formula

$$x_{n+1} = \cos^{-1}\left(\frac{\pi}{4 + 4x_n}\right)$$

to determine the value of x correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]